Lý thuyết, cách xác định và bài tập về khoảng cách từ một điểm đến một đường thẳng

Với tài liệu về khoảng cách từ một điểm đến một đường thẳng bao gồm: lý thuyết và bài tập cũng như những định nghĩa, tính chất, các dạng bài sẽ giúp bạn nắm vững kiến thức và học tốt môn Toán hơn.

 

 

1 81 05/08/2024


Khoảng cách từ một điểm đến một đường thẳng

I. Lý thuyết tổng hợp

Khoảng cách từ một điểm đến một đường thẳng là gì?

- Cho đường thẳng d: ax + by + c = 0 và điểm M(x’; y’). Khi đó khoảng cách từ điểm M đến đường thẳng d được kí hiệu là d(M; d) và d(M;d)=ax'+by'+ca2+b2.

- Chú ý: Trong trường hợp đường thẳng Δ chưa viết dưới dạng tổng quát thì đầu tiên ta cần đưa đường thẳng d về dạng tổng quát.

- Cho hai điểm M(x; y) và N(x’; y’), khoảng cách giữa M và N là: MN=(x'x)2+(y'y)2

II. Công thức tính khoảng cách từ một điểm đến một đường thẳng

- Cho đường thẳng d: ax + by + c = 0 và điểm M(x’; y’), ta có:

d(M;d)=ax'+by'+ca2+b2

- Cho hai điểm M(x; y) và N(x’; y’), ta có:

MN=(x'x)2+(y'y)2

III. Ví dụ minh họa

Bài 1: Cho một đường thẳng có phương trình có dạng d: – x + 3y + 1 = 0. Hãy tính khoảng cách từ Q (2; 1) tới đường thẳng d.

Lời giải:

Ta có:

d(Q;d)=2+3.1+1(1)2+32=105

Bài 2: Cho một đường thẳng có phương trình có dạng d’: 2x + 2y + 5 = 0. Tính khoảng cách từ M (2; 3) tới đường thẳng d’.

Lời giải:

Ta có:

d(M;d')=2.2+2.3+522+22=1524

Bài 3: Cho hai điểm A(2; 7) và B(1; 3). Tính độ dài đoạn thẳng AB.

Lời giải:

Ta có:

AB=(12)2+(37)2=17

IV. Bài tập vận dụng

Bài 1. Khoảng cách từ giao điểm của hai đường thẳng (a): x - 3y + 4 = 0 và
(b): 2x + 3y - 1 = 0 đến đường thẳng ∆: 3x + y + 16 = 0 bằng:

A. 2√10

B. Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10

C. Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10

D. 2

Lời giải

Gọi A là giao điểm của hai đường thẳng ( a) và ( b) tọa độ điểm A là nghiệm hệ phương trình :

Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10 ⇒ A( -1; 1)

Khoảng cách từ điểm A đến đường thẳng ∆ là :

d( A; ∆) = Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10 = Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10

Chọn C

Bài 2. Trong mặt phẳng với hệ tọa độ Oxy , cho tam giác ABC có A( 1; 2) ; B(0; 3) và C(4; 0) . Chiều cao của tam giác kẻ từ đỉnh A bằng:

A. Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10

B. 3

C. Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10

D. Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10

Lời giải

+ Phương trình đường thẳng BC:

Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10

⇒ ( BC) : 3(x - 0) + 4( y - 3) = 0 hay 3x + 4y - 12 = 0

⇒ chiều cao của tam giác kẻ từ đỉnh A chính là khoảng cách từ điểm A đến đường thẳng BC.

d( A; BC) = Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10 = Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10

Chọn A.

Bài 3. Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có A(3; -4); B(1; 5) và C(3;1) . Tính diện tích tam giác ABC.

A. 10

B. 5

C. √26

D. 2√5

Lời giải

+ Phương trình BC:

Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10

⇒Phương trình BC: 2( x - 1) + 1( y - 5) = 0 hay 2x + y - 7 = 0

⇒ d( A;BC) = Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10 = √5

+ BC = Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10 = 2√5

⇒ diện tích tam giác ABC là: S = Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10 .d( A; BC).BC = Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10 .√5.2√5 = 5

Chọn B.

Bài 4. Hai cạnh của hình chữ nhật nằm trên hai đường thẳng d1 : 4x - 3y + 5 = 0 và
d2: 3x + 4y – 5 = 0, đỉnh A( 2; 1). Diện tích của hình chữ nhật là:

A. 1.

B. 2

C. 3

D. 4

Lời giải

+ Nhận xét : điểm A không thuộc hai đường thẳng trên.

⇒ Độ dài hai cạnh kề của hình chữ nhật bằng khoảng cách từ A(2; 1) đến hai đường thẳng trên, do đó diện tích hình chữ nhật bằng

S = Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10 = 2 .

Chọn B.

Bài 5: Cho một đường thẳng có phương trình có dạng d: –2x + 4y + 1 = 0. Tính khoảng cách từ P(0; 1) tới đường thẳng d.

Bài 6: Cho một đường thẳng có phương trình có dạng d: x + 5y + 1 = 0. Tính khoảng cách từ M(5; 6) tới đường thẳng d.

Xem thêm tổng hợp công thức môn Toán lớp 10 khác:

Công thức viết phương trình đường thẳng theo đoạn chắn hay, chi tiết nhất

Công thức tìm điểm đối xứng qua đường thẳng hay và chi tiết

1 81 05/08/2024


Xem thêm các chương trình khác: