Lý thuyết, cách xác định và bài tập tính chất 3 đường cao
Với tài liệu bài tập tính chất 3 đường cao bao gồm: lý thuyết và bài tập cũng như những định nghĩa, tính chất, các dạng bài sẽ giúp bạn nắm vững kiến thức và học tốt môn Toán hơn.
Tính chất 3 đường cao
A. Lý thuyết
1. Đường cao của tam giác
• Trong một tam giác, đoạn vuông góc kẻ từ một đỉnh đến đường thẳng chứa cạnh đối diện gọi là đường cao của tam giác đó.
Ví dụ: Đoạn thẳng AI là một đường cao của tam giác ABC, còn nói AI là đường cao xuất phát từ đỉnh A (của tam giác ABC).
• Mỗi tam giác có ba đường cao.
2. Tính chất ba đường cao của một tam giác
Ba đường cao của tam giác cùng đi qua một điểm. Điểm đó gọi là trực tâm của tam giác.
Ví dụ: H là giao điểm ba đường cao của tam giác ABC. H là trực tâm của tam giác ABC
3. Về các đường cao, trung tuyến, trung trực, phân giác của tam giác cân
Tính chất của tam giác cân: Trong một tam giác cân, đường trung trực ứng với cạnh đáy đồng thời là đường phân giác, đường trung tuyến và đường cao cùng xuất phát từ đỉnh đối diện với cạnh đó.
Nhận xét:
Trong một tam giác, nếu hai trong bốn loại đường (đường trung tuyến, đường phân giác, đường cao cùng xuất phát từ một đỉnh và đường trung trực ứng với cạnh đối diện của đỉnh này) trùng nhau thì tam giác đó là một tam giác cân
Đặc biệt đối với tam giác đều, từ tính chất trên suy ra: Trong tam giác đều, trọng tâm, trực tâm, điểm cách đều ba đỉnh, điểm nằm trong tam giác và cách đều ba cạnh là bốn điểm trùng nhau.
4. Ví dụ
Ví dụ :Cho tam giác nhọn ABC có hai đường cao AH và BK cắt nhau tại D. Biết , tính
Lời giải:
B. Bài tập
Bài 1: Cho hai đường thẳng xx' và yy' cắt nhau tại O. Trên Ox và Ox’ lần lượt lấy các điểm A và C; trên Oy và Oy’ lần lượt lấy các điểm B, D sao cho OA = OA, OC = OD. Gọi M, N lần lượt là trung điểm của AB, CD
Chứng minh M, O, N thẳng hàng.
Lời giải:
Bài 2:Cho tam giác ABC cân tại A. Qua A kẻ đường thẳng d song song với đáy BC. Các đường phân giác của góc B và góc C lần lượt cắt d tại E và F. Chứng minh rằng:
a) d là phân giác ngoài của góc A
b) AE = AF
Lời giải:
b) Gọi I là giao điểm của hai tia phân giác CF và BE trong tam giác ABC
Nên I là giao điểm của ba đường phân giác trong tam giác ABC
Suy ra AI là tai phân giác của góc
Mà tam giác ABC cân tại A
Nên AI là đường trung trực ứng với cạnh BC của tam giác ABC
C. Bài tập tự luyện
Bài 1. Cho ∆ABC có > 90o, AD vuông góc với BC tại D, BE vuông góc với AC tại E. Gọi F là giao điểm của đường thẳng AD và BE. Chứng minh AB ⊥ FC.
Hướng dẫn giải
Xét ∆FBC có AD ⊥ BC nên FD ⊥ BC (1)
BE ⊥ AC ⇒ CE ⊥ BF (2)
Từ (1) và (2) suy ra CE và FD là đường cao của ∆FBC.
Mà {A} = FD ∩ CE nên A là trực tâm ∆FBC,
Suy ra A thuộc đường cao hạ từ B của ∆FBC ⇒ AB ⊥ PC.
Bài 2. Cho ∆ABC có 3 góc nhọn (AB < AC), đường cao AH. Lấy D là điểm thuộc đoạn HC, vẽ DE ⊥ AC (E ∈ AC). Gọi K là giao điểm của AH và DE. Chứng minh AD ⊥ KC.
Hướng dẫn giải:
Xét ∆AKC ta có: AH ⊥ BC ⇒ CH ⊥ AK. (1)
Và DE ⊥ AC ⇒ KE ⊥ AC.
Từ (1) và (2) suy ra KE và CH là hai đường cao của ∆AKC.
Mà {D} = KE ∩ CH nên D là trực tâm của ∆AKC
⇒ D thuộc đường cao hạ từ A của ∆AKC ⇒ AD ⊥ KC.
Bài 3. Cho ∆ABC có >90o , AD vuông góc với BC tại D, BE vuông góc với AC tại E. Gọi F là giao điểm của đường thẳng AD và BE. Chứng minh AB ⊥ FC.
Hướng dẫn giải:
Xét ∆FBC có AD ⊥ BC nên FD ⊥ BC. (1)
BE ⊥ AC ⇒ CE ⊥ BF.
Từ (1) và (2) suy ra CE và FD là các đường cao của ∆FBC.
Mà {A} = FD ∩ CE nên A là trực tâm ∆FBC.
Suy ra A thuộc đường cao hạ từ B của ∆FBC ⇒ AB ⊥ FC.
Bài 4. Cho ∆ABC vuông tại A. Trên cạnh AC lấy điểm M bất kì (M ≠ A, C). Qua M kẻ đường thẳng vuông góc với BC tại N; từ C kẻ đường thẳng vuông góc với BM tại P. Chứng minh ba đường thẳng AB, CP, MN cùng đi qua một điểm.
Hướng dẫn giải:
Gọi D là giao điểm của các đường thẳng AB và CP.
Xét ∆DBC ta có:
AB ⊥ AC ⇒ AC ⊥ BD, (1)
CP ⊥ BP ⇒ BP ⊥ DC (2)
Từ (1) và (2) suy ra CA và BP là các đường cao của ∆DBC.
Mà {M} = BP ∩ CA nên M là trực tâm ∆DBC ⇒ DM ⊥ BC.
Lại có MN ⊥ BC nên M, N, D thẳng hàng ⇒ AB, MN và CP cùng đi qua điểm D.
Bài 5. Cho ∆ABC có BD và CE lần lượt là các đường cao hạ từ B, C và BD = CE. H là giao điểm của BD và CE. Chứng minh rằng ∆ABC cân và AH là phân giác .
Hướng dẫn giải:
Xét ∆DBA và ∆ECA có:
;
CE = BD (gt);
là góc chung.
Do đó ∆DBA = ∆ECA (g.c.g)
Suy ra AB = AC (hai cạnh tương ứng)
Do đó ∆ABC cân tại A.
Xét ∆ABC có BD ⊥ AC, CE ⊥ AB.
Mà H là giao điểm của CE và BD nên H là trực tâm của ∆ABC.
Suy ra AH là đường cao của ∆ABC.
Mà ∆ABC cân tại A nên AH là phân giác của .
Bài 6. Cho ∆ABC cân tại A, có , đường cao BH cắt đường trung tuyến AM (M ∈ BC) ở K. Chứng minh CK ⊥ AB và tính .
Bài 7. Cho ∆ABC vuông cân tại A. Trên cạnh AB lấy điểm D bất kì (D ≠ A, B), trên tia đối của tia AC lấy điểm E sao cho AD = AE. Chứng minh ED ⊥ BC.
Bài 8. Cho ∆ABC vuông tại A, đường cao AH, phân giác AD. Gọi I, J lần lượt là giao điểm các đường phân giác trong của ∆ABH, ∆ACH. E là giao điểm của đường thẳng BI với A. Chứng minh rằng:
a) ∆ADE là tam giác vuông.
b) IJ ⊥ AD.
Bài 9. Cho ∆ABC, có , ; đường cao AH. Trên cạnh AC lấy điểm D sao cho . Vẽ đường phân giác của cắt BD ở E. Chứng minh rằng AE ⊥ BD.
Bài 10. Cho ∆ABC nhọn, có AH ⊥ BC (H ∈ BC). Trên AH lấy điểm D sao cho . Chứng minh BD ⊥ AC.
Xem thêm các phần lý thuyết, các dạng bài tập Toán lớp 7 khác:
Xem thêm các chương trình khác:
- Các dạng bài tập Tiếng Anh thông dụng nhất
- 3000 câu hỏi ôn tập môn Tiếng Anh có đáp án
- Toàn bộ kiến thức về cụm động từ | Định nghĩa và cách dùng
- 500 đoạn văn Tiếng Anh thông dụng nhất và cách làm
- 1000 câu hỏi ôn tập môn Công nghệ có đáp án
- 1000 câu hỏi ôn tập Giáo dục công dân
- 3000 câu hỏi ôn tập môn Vật lí có đáp án
- Tổng hợp Dạng bài - Công thức môn Vật lí
- Phương trình hóa học | Tổng hợp PTHH của các chất hữu cơ, vô cơ chính xác nhất
- Đồng phân & Công thức cấu tạo của các chất hữu cơ
- Nhận biết các chất Hóa học
- Cấu hình electron
- So sánh bán kính nguyên tử và bán kính ion
- 1000 câu hỏi ôn tập môn Hóa có đáp án
- Wiki các chất hóa học | Định nghĩa, tính chất, nhận biết, điều chế, ứng dụng
- Cách đọc danh pháp hóa học (chương trình mới) đầy đủ nhất
- Công thức Lewis của một số chất thường gặp (chương trình mới)
- Công thức electron của một số chất thường gặp (chương trình mới)
- Công thức cấu tạo của một số chất thường gặp (chương trình mới)
- Công thức hợp chất khí với hidro của các nguyên tố (phổ biến) | Cách viết công thức hợp chất khí với hidro
- Công thức hidroxit cao nhất của các nguyên tố (phổ biến) | Cách viết công thức hidroxit cao nhất
- Công thức oxit cao nhất của các nguyên tố (phổ biến) | Cách viết công thức oxit cao nhất
- 2000 câu hỏi ôn tập môn Tin học có đáp án
- 3000 câu hỏi ôn tập môn Lịch sử có đáp án
- 3000 câu hỏi ôn tập môn Địa lí có đáp án
- 2000 câu hỏi ôn tập môn Sinh học có đáp án
- Tổng hợp Dạng bài - Công thức môn Sinh học
- Tổng hợp về các tác giả văn học
- 3000 câu hỏi ôn tập môn Ngữ văn có đáp án
- Tổng hợp kiến thức Ngữ Văn
- Trò chơi Powerpoint | Game Powerpoint
- Tổng hợp bài thu hoạch BDTX Giáo viên mầm non (2024) theo Thông tư 12
- Tổng hợp bài thu hoạch BDTX Giáo viên tiểu học (2024)
- Tổng hợp bài thu hoạch BDTX Giáo viên THCS (2024)
- Tổng hợp bài thu hoạch BDTX Giáo viên THPT (2024)