Cách chứng minh đường trung trực
Với tài liệu về Cách chứng minh đường trung trực bao gồm: lý thuyết và bài tập cũng như những định nghĩa, tính chất, các dạng bài sẽ giúp bạn nắm vững kiến thức và học tốt môn Toán hơn.
Cách chứng minh đường trung trực
I. Lý thuyết
1. Định nghĩa
Trong hình học phẳng, đường thẳng vuông góc với một đoạn thẳng tại trung điểm của nó được gọi là đường trung trực của đoạn thẳng đó.
2. Tính chất
a) Tính chất đường trung trực của một đoạn thẳng
- Định lý 1 (định lí thuận): Điểm nằm trên đường trung trực của 1 đoạn thẳng thì cách đều 2 mút của đoạn thẳng đó.
- Định lí 2 (định lí đảo): Điểm cách đều 2 đầu mút của 1 đoạn thẳng thì nằm trên đường trung trực của đoạn thẳng đó
b) Tính chất ba đường trung trực của tam giác
Ba đường trung trực của một tam giác cùng đi qua một điểm. Điểm này cách đều ba đỉnh của tam giác đó
c) Tính chất đường trung trực của tam giác cân
Trong tam giác cân, đường trung trực ứng với cạnh đáy còn được gọi là đường phân giác, đường trung tuyến và đường cao cùng xuất phát từ đỉnh đối diện với cạnh đó.
d) Tính chất đường trung trực của tam giác vuông
Trong tam giác vuông, trung điểm của cạnh huyền chính là giao điểm của 3 đường trung trực. Tam giác ABC vuông tại B, giao điểm của 3 đường trung trực là trung điểm E của cạnh huyền AC.
e) Tính chất đường trung với đường tròn ngoại tiếp tam giác
Ba đường trung trực của một tam giác cùng đi qua một điểm. Điểm này cách đều ba đỉnh của tam giác đó.
3. Cách chứng minh
- Phương pháp 1: Chứng minh d vuông góc AB tại trung điểm AB
- Phương pháp 2: Chứng minh 2 điểm trên d cách đều 2 điểm A và B
- Phương pháp 3: Dùng tính chất đường trung tuyến, đường cao
- Phương pháp 4: Áp dụng tính chất đối xứng của trục
- Phương pháp 5: Áp dụng tính chất đoạn nối tâm của 2 đường tròn cắt nhau ở 2 điểm.
II. Ví dụ minh họa
Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của AB và AC. Vẽ đường trung trực của các cạnh AB, AC cắt BC lần lượt tại D và E. Các tam giác ABD và AEC là tam giác gì?
Hướng dẫn giải:
Vì DM là đường trung trực của cạnh AB nên DA = DB
Suy ra, tam giác ADB cân tại D.
Vì EN là đường trung trực của cạnh AC nên EA = EC
Suy ra, tam giác AEC cân tại E.
Ví dụ 2: Cho ba tam giác cân ABC, DBC, EBC có chung đáy BC. Chứng minh ba điểm A, D, E thẳng hàng.
Hướng dẫn giải:
Vì ΔABC cân tại A ⇒ AB = AC ⇒ A thuộc đường trung trực của BC.
Vì ΔDBC cân tại D ⇒ DB = DC ⇒ D thuộc đường trung trực của BC
Vì ΔEBC cân tại E ⇒ EB = EC ⇒ E thuộc đường trung trực của BC
Do đó A, D, E cùng thuộc đường trung trực của BC nên kết luận A, D, E thẳng hàng (điều phải chứng minh).
III. Bài tập vận dụng
Bài 1: Cho tam giác ABC vuông tại B có AB = 6cm, BC = 8cm. Gọi E là giao điểm của ba đường trung trực của tam giác ABC. Tính độ dài khoảng cách từ E đến ba đỉnh của tam giác ABC?
Giải:
Vì E là giao điểm của ba đường trung trực của tam giác ABC nên ta có: EA = EB = EC
Mà tam giác ABC vuông tại B nên E là trung điểm của AC
Áp dụng định lí Pytago vào tam giác ABC ta được:
AC^2 = AB^2 + BC^2 = 100
=> AC = 10 cm
=> EA = EB = EC = AC/2 = 5 cm
Bài 2: Cho tam giác ABC vuông tại A, tia phân giác của góc B cắt cạnh AC tại điểm D. Trên cạnh BC, lấy điểm E sao cho: BE = AB. Chứng minh rằng: AD = DE.
Giải
Xét tam giác ABD và tam giác EBD, có:
BD là cạnh chung
BE = AB (đề bài đã cho)
góc ABD = góc DBE (vì BD là tia phân giác của góc B)
=> Tam giác ABD = tam giác EBD (c.g.c)
=> AD = DE (điều phải chứng minh).
Bài 3: Chứng minh đường thẳng PQ là đường trung trực của đoạn thẳng MN.
Giải
P, Q là giao điểm của hai cung tròn tâm M, N có cùng bán kính nên:
PM = PN (= bán kính cung tròn).
QM = QN (= bán kính cung tròn).
Suy ra P và Q cùng thuộc đường trung trực của đoạn thẳng MN.
Vậy PQ là đường trung trực của đoạn thẳng MN.
Bài 4: Cho ba tam giác cân ABC, DBC, EBC có chung đáy BC. Chứng minh ba điểm A, D, E thẳng hàng.
Giải:
Vì ΔABC cân tại A ⇒ AB = AC
⇒ A thuộc đường trung trực của BC.
Vì ΔDBC cân tại D ⇒ DB = DC
⇒ D thuộc đường trung trực của BC
Vì ΔEBC cân tại E ⇒ EB = EC
⇒ E thuộc đường trung trực của BC
Do đó A, D, E cùng thuộc đường trung trực của BC
Vậy A, D, E thẳng hàng
Bài 5:Cho hình bên, M là một điểm tùy ý nằm trên đường thẳng a. Vẽ điểm C sao cho đường thẳng a là trung trực của AC.
a) Hãy so sánh MA + MB với BC.
b) Tìm vị trí của điểm M trên đường thẳng a để MA + MB là nhỏ nhất.
Giải:
a) Gọi H là giao điểm của a với AC
∆MHA = ∆MHC (c.g.c) => MA = MC.
Do đó:
MA + MB = MC + MB.
Gọi N là giao điểm của đường thẳng a với BC (chứng minh được NA = NC).
Nếu M không trùng với N thì:
MA + MB = MC + MB > BC (bất đẳng thức trong ∆BMC).
Nếu M trùng với N thì :
MA + MB = NA + NB = NC + NB = BC.
Vậy MA + MB ≥ BC.
b) Từ câu a) ta suy ra : Khi M trùng với N thì tổng MA + MB là nhỏ nhất.
Bài 6: Cho tam giác ABC vuông tại B có AB = 6cm, BC = 8cm. Gọi E là giao điểm của ba đường trung trực của tam giác ABC. Tính độ dài khoảng cách từ E đến ba đỉnh của tam giác ABC?
Giải:
Vì E là giao điểm của ba đường trung trực của tam giác ABC nên ta có:
EA = EB = EC
Mà tam giác ABC vuông tại B nên E là trung điểm của AC
Áp dụng định lí Pytago vào tam giác ABC ta được:
Bài 7: Cho ba tam giác cân ABC, DBC, EBC có chung đáy BC. Chứng minh ba điểm A, D, E thẳng hàng.
Bài 8: Cho tam giác ABC có AC > AB, phân giác AD. Trên AC lấy điểm E sao cho AE = AB. Chứng minh rằng AD vuông góc với BE.
Bài 9: Cho đoạn thẳng AB thuộc nửa mặt phẳng bờ d. Xác định điểm M thuộc d sao cho M cách đều hai điểm A, B.
Xem thêm các chương trình khác:
- Các dạng bài tập Tiếng Anh thông dụng nhất
- 3000 câu hỏi ôn tập môn Tiếng Anh có đáp án
- Toàn bộ kiến thức về cụm động từ | Định nghĩa và cách dùng
- 500 đoạn văn Tiếng Anh thông dụng nhất và cách làm
- 1000 câu hỏi ôn tập môn Công nghệ có đáp án
- 1000 câu hỏi ôn tập Giáo dục công dân
- 3000 câu hỏi ôn tập môn Vật lí có đáp án
- Tổng hợp Dạng bài - Công thức môn Vật lí
- Phương trình hóa học | Tổng hợp PTHH của các chất hữu cơ, vô cơ chính xác nhất
- Đồng phân & Công thức cấu tạo của các chất hữu cơ
- Nhận biết các chất Hóa học
- Cấu hình electron
- So sánh bán kính nguyên tử và bán kính ion
- 1000 câu hỏi ôn tập môn Hóa có đáp án
- Wiki các chất hóa học | Định nghĩa, tính chất, nhận biết, điều chế, ứng dụng
- Cách đọc danh pháp hóa học (chương trình mới) đầy đủ nhất
- Công thức Lewis của một số chất thường gặp (chương trình mới)
- Công thức electron của một số chất thường gặp (chương trình mới)
- Công thức cấu tạo của một số chất thường gặp (chương trình mới)
- Công thức hợp chất khí với hidro của các nguyên tố (phổ biến) | Cách viết công thức hợp chất khí với hidro
- Công thức hidroxit cao nhất của các nguyên tố (phổ biến) | Cách viết công thức hidroxit cao nhất
- Công thức oxit cao nhất của các nguyên tố (phổ biến) | Cách viết công thức oxit cao nhất
- 2000 câu hỏi ôn tập môn Tin học có đáp án
- 3000 câu hỏi ôn tập môn Lịch sử có đáp án
- 3000 câu hỏi ôn tập môn Địa lí có đáp án
- 2000 câu hỏi ôn tập môn Sinh học có đáp án
- Tổng hợp Dạng bài - Công thức môn Sinh học
- Tổng hợp về các tác giả văn học
- 3000 câu hỏi ôn tập môn Ngữ văn có đáp án
- Tổng hợp kiến thức Ngữ Văn
- Trò chơi Powerpoint | Game Powerpoint
- Tổng hợp bài thu hoạch BDTX Giáo viên mầm non (2024) theo Thông tư 12
- Tổng hợp bài thu hoạch BDTX Giáo viên tiểu học (2024)
- Tổng hợp bài thu hoạch BDTX Giáo viên THCS (2024)
- Tổng hợp bài thu hoạch BDTX Giáo viên THPT (2024)