Lý thuyết, cách xác định và bài tập các công thức đạo hàm

Với tài liệu về các công thức đạo hàm bao gồm: lý thuyết và bài tập cũng như những định nghĩa, tính chất, các dạng bài sẽ giúp bạn nắm vững kiến thức và học tốt môn Toán hơn.

 

1 109 05/08/2024


Đạo hàm

A. Phương pháp giải & Ví dụ

1. Định nghĩa đạo hàm tại một điểm

Cho hàm số y = f(x) xác định trên khoảng (a; b) và x0 ∈ (a; b). Nếu tồn tại giới hạn (hữu hạn)

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

thì giới hạn đó được gọi là đạo hàm của hàm số y = f(x) tại x0 và kí hiệu là f’(x0) (hoặc y’(x0)), tức là

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Chú ý:

Đại lượng Δx = x – x0 gọi là số gia của đối số x tại x0.

Đại lượng Δy = f(x) – f(x0) = f(x0 + Δx) – f(x0) được gọi là số gia tương ứng của hàm số. Như vậy

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

2. Cách tính đạo hàm bằng định nghĩa

Bước 1. Giả sử Δx là số gia của đối số x tại x0, tính Δy = f(x0 + Δx) – f(x0).

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Chú ý: Trong định nghĩa trên đây, thay xo bởi x ta sẽ có định nghĩa và quy tắc tính đạo hàm của hàm số y = f(x) tại điểm x ∈ (a, b)

Ví dụ minh họa

Bài 1: Cho hàm số Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án có Δx là số gia của đối số tại x = 2. Khi đó Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án bằng bao nhiêu?

Hướng dẫn:

Tập xác định của hàm số đã cho là D = [2/3; +∞)

Với Δx là số gia của đối số tại x = 2 sao cho 2 + Δx ∈ D, thì

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Bài 2: Cho hàm số f(x) = 3x + 5.Tính đạo hàm của hàm số đã cho bằng định nghĩa.

Hướng dẫn:

Tập xác định của hàm số đã cho là D = R

Ta có Δy = 3(x+Δx) + 5 - 3x - 5 = 3Δx

Khi đó:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Bài 3: Cho hàm số Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Đạo hàm của hàm số đã cho tại x = 1?

Hướng dẫn:

với Δx là số gia của đối số tại x = 1, ta có

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Bài 4: Tính đạo hàm của các hàm số sau tại các điểm đã cho: f(x)= 2x3 + 1 tại x = 2

Hướng dẫn:

Ta có

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Bài 5: Tính đạo hàm của các hàm số sau tại các điểm đã cho:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Hướng dẫn:

Ta có

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Bài 6: Tính đạo hàm của hàm số:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Hướng dẫn:

Ta có f(0) = 0, do đó:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Bài 7: Tính đạo hàm của hàm số Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án bằng định nghĩa

Hướng dẫn:

Tập xác định của hàm số đã cho là D = R\{-1}

Ta có

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

B. Bài tập vận dụng

Bài 1: Cho hàm số f(x) = x2 + 2x, có Δx là số gia của đối số tại x = 1, Δy là số gia tương ứng của hàm số. Khi đó Δy bằng:

A. (Δx)2 + 2Δx

B. (Δx)2 + 4Δx

C. (Δx)2 + 2Δx - 3

D. 3

Lời giải:

Đáp án: B

Δy = f(1 + Δx) - f(1) = (1 + Δx)2 + 2(1 + Δx) - (1 + 2) = (Δx)2 + 4Δx

Đáp án B

Bài 2: Cho hàm số Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Đạo hàm của hàm số đã cho tại x = 1 là:

A. 1/4 B. -1/2 C. 0 D. 1/2

Lời giải:

Đáp án: A

với Δx là số gia của đối số tại x = 1, ta có

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Đáp án A

Bài 3: Cho hàm số f(x) = |x + 1|. Khẳng định nào sau đây là sai?

A. f(x) liên tục tại x = -1

B. f(x) có đạo hàm tại x = -1

C. f(-1) = 0

D. f(x) đạt giá trị nhỏ nhất tại x = -1

Lời giải:

Đáp án: B

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Suy ra không tồn tại giới hạn của tỉ số Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án khi x → -1

Do đó hàm số đã cho không có đạo hàm tại x = -1

Vậy chọn đáp án là B

Bài 4: Số gia của hàm số f(x) = 2x2 - 1 tại x0 = 1 ứng với số gia Δx = 0,1 bằng:

A. 1

B. 1,42

C. 2,02

D. 0,42

Lời giải:

Đáp án: B

chọn đáp án là B

Bài 5: Cho hàm số y = √x, Δx là số gia của đối số tại x. Khi đó Δy/Δx bằng:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Lời giải:

Đáp án: C

Δy = f(x0 + Δx) - f(x0)

Vậy chọn đáp án là C

Bài 6: Cho hàm số Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Đạo hàm của hàm số đã cho tại x = 1?

A. 1 B. 0 C. 1/4 D. -1/4

Lời giải:

Đáp án: C

Ta có

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Vậy chọn đáp án là C

Bài 7: Đạo hàm của các hàm số sau tại các điểm đã cho: f(x) = 2x3 + 1 tại x = 2?

A. 10

B. 24

C. 22

D. 42

Lời giải:

Đáp án: B

Ta có

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Vậy chọn đáp án là B

Bài 8: Đạo hàm của các hàm số sau tại các điểm đã cho:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

A. 1/2 B. -1/√2 C. 0 D. 3

Lời giải:

Đáp án: A

Ta có f(0) = 0, do đó:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Vậy chọn đáp án là A

Bài 9: Hàm số Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án có Δx là số gia của đối số tại x = 2. Khi đó Δy/Δx bằng?

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Lời giải:

Đáp án: A

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Vậy chọn đáp án là A

Bài 10: Đạo hàm của các hàm số sau tại các điểm đã cho: f(x) = x2 + 1 tại x = 1?

A. 1/2 B. 1 C. 0 D. 2

Lời giải:

Đáp án: D

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Vậy chọn đáp án là D

C. Bài tập tự luyện

Bài 1. Cho hàm số f(x) = 2x2 + x + 1. Hãy tính f'(2) theo phương pháp tính đạo hàm bằng định nghĩa.

Bài 2. Tính (bằng định nghĩa) đạo hàm của mỗi hàm số sau tại các điểm đã chỉ ra:

a) y = x2 + x tại x0 = 5.

b) y = 1x tại x0 = -3.

Bài 3. Cho hàm số: y = x5x1x22x+1x1x<1. Tính đạo hàm của hàm số tại x0 = 1.

Bài 4. Cho hàm số: f(x) = 34x4x014x=0. Khi đó f’(0) là kết quả nào?

Bài 5. Tìm a; b để hàm số y = f(x) = x2+3x1ax+bx<1 có đạo hàm tại x = 1.

Xem thêm các dạng bài tập Toán lớp 11 có trong đề thi THPT Quốc gia khác:

1 109 05/08/2024


Xem thêm các chương trình khác: