Lý thuyết, cách xác định và bài tập các trường hợp góc giữa 2 đường thẳng
Với tài liệu về các trường hợp góc giữa 2 đường thẳng bao gồm: lý thuyết và bài tập cũng như những định nghĩa, tính chất, các dạng bài sẽ giúp bạn nắm vững kiến thức và học tốt môn Toán hơn.
A. Phương pháp giải
Để xác định góc giữa hai đường thẳng d và d’ ta có hai cách sau:
+ Cách 1: Gọi n→(x; y) và n'→( x'; y') lần lượt là VTPT của hai đường thẳng d và d’. Gọi α là góc giữa hai đường thẳng. Ta có:
Cosα = |cos( n→; n'→ ) | =
+ Cách 2: Gọi k1 và k2 lần lượt là hệ số góc của hai đường thẳng. Gọi α là góc giữa hai đường thẳng. Ta có:
tgα =
B. Ví dụ minh họa
Ví dụ 1: Tính góc giữa hai đường thẳng (a): 3x + y - 2 = 0 và (b): 2x - y + 39 = 0.
A. 300 B. 600 C. 900 D. 450
Hướng dẫn giải
Đường thẳng: 3x + y - 2 = 0có VTPT n→( 3; 1).
Đường thẳng: 2x - y + 39 = 0 có VTPT n→( 2; -1)
cos(a; b) = |cos( na→; nb→ ) |
=
⇒ ( a; b) = 450
Chọn D.
Ví dụ 2: Tìm côsin góc giữa 2 đường thẳng ∆1 : 10x + 5y - 1 = 0 và ∆2 :
A. B. C. D.
Hướng dẫn:
Vectơ pháp tuyến của ∆1; ∆2 lần lượt là n1→ = (2; 1); n2→ = (1; 1)
cos(∆1; ∆2) = |cos( n1→, n2→ ) | =
Chọn B.
Ví dụ 3. Tính góc giữa hai đường thẳng: 3x + y - 8 = 0 và 4x – 2y + 10 = 0 .
A. 300 B. 600 C. 900 D. 450
Lời giải
Đường thẳng: 3x + y – 8 = 0 có VTPT n1→(3; 1)
Đường thẳng: 4x - 2y + 10= 0 có VTPT n2→(4; -2)
cos(d1, d2) = |cos( n1→, n2→ ) | = ⇒ (d1, d2) = 450
Chọn D.
Ví dụ 4: Tìm côsin góc giữa 2 đường thẳng d1: x + 3y - 9 = 0 và d2:
A. B. C. D. tất cả sai
Lời giải
Vectơ pháp tuyến của d1; d2 lần lượt là n1→( 1; 3); n2→(1; -1).
Cos( d1; d2) = |cos( n1→, n2→ ) | =
Chọn C.
Ví dụ 5 : Tính góc giữa hai đường thẳng: (a): = 1 và (b):
A. 00 B. 450 C. 600 D. 900
Hướng dẫn giải
Đường thẳng (a) ⇔ 4x + 2y - 8 = 0 có VTPT n→( 4; 2)
Đường thẳng (b) có VTCP u→( 2; -4) nên VTPT n'→( 4; 2)
⇒ cos(a; b) = = 1
⇒ Góc giữa hai đường thẳng đã cho là 00.
Chọn A.
Ví dụ 6: Cho đường thẳng (a): x + y - 10 = 0 và đường thẳng (b): 2x + my + 99 = 0. Tìm m để góc giữa hai đường thẳng trên bằng 450.
A. m = -1 B. m = 0 C. m = 1 D. m = 2
Lời giải
Đường thẳng (a) có VTPT n→( 1; 1)
Đường thẳng (b) có VTPT n'→( 2 ;m)
Để góc giữa hai đường thẳng a và b bằng 450 thì
Cos450 =
⇔ |2 + m| =
⇔ 4 + 4m + m2 = 4 + m2
⇔ 4m = 0 ⇔ m = 0
Chọn B
Ví dụ 7: Cho đường thẳng (a): y = 2x + 3 và (b): y = -x + 6. Tính tan của góc tạo bởi hai đường thẳng (a) và (b)?
A. 1 B. 2 C. 3 D. 4
Lời giải
Gọi α là góc tạo bởi hai đường thẳng (a) và (b).
Đường thẳng (a) có hệ số góc k1 = 2 và đường thẳng (b) có hệ số góc k2 = -1.
⇒ Tan của góc tạo bởi hai đường thẳng trên là:
Tgα = = 3
Chọn C.
Ví dụ 8: Cho hai đường thẳng (d1): y = - 3x + 8 và (d2) : x + y - 10 = 0. Tính tan của góc tạo bởi hai đường thẳng d1 và d2?
A. B. 1 C. 3 D.
Lời giải
Đường thẳng (d1) có hệ số góc k1 = - 3.
Đường thẳng (d2) ⇔ y = -x + 10 có hệ số góc k2 = -1.
⇒ tan của góc tạo bởi hai đường thẳng trên là:
tgα =
Chọn A.
Ví dụ 9: Cho đường thẳng (a): và đường thẳng ( b): x + my - 4 = 0. Hỏi có bao nhiêu giá trị của m để góc giữa hai đường thẳng trên bằng 600.
A. 1 B. 2 C. 3 D. 4
Lời giải
+ Đường thẳng (a) có VTCP u→( m, 1) nên có VTPT n→( 1; -m) .
+ Đường thẳng (b) có VTPT n'→( 1; m).
+ Để góc giữa hai đường thẳng trên bằng 600 thì:
Cos600 =
⇔ 1 + m2 = 2.|1 - m2| (*)
+ Nếu -1 < m < 1 thì 1 - m2 > 0. Từ (*) suy ra: 1 + m2 = 2 (1 - m2)
⇔ 1+ m2 = 2- 2m2 ⇔ 3m2 = 1
⇔ m2 = ⇔ m= ± ( thỏa mãn điều kiện) .
+ Nếu m ≥ 1 hoặc m ≤ -1 thì 1- m2 ≤ 0. Từ (*) suy ra:
1 + m2 = 2( m2 - 1) ⇔ 1 + m2 = 2m2 - 2
⇔ m2 = 3 ⇔ m = ±√3.
Vậy có 4 giá trị của m thỏa mãn.
Chọn D.
C. Bài tập vận dụng
Câu 1: Tìm côsin góc giữa 2 đường thẳng d1: x + 2y - 7 = 0 và d2: 2x - 4y + 9 = 0.
A. - B. C. D.
Lời giải:
Đáp án: A
Vectơ pháp tuyến của đường thẳng d1 là n1→ = (1; 2)
Vectơ pháp tuyến của đường thẳng d2 là n2→ = (2; -4)
Gọi φ là góc giữa 2 đường thẳng ta có:
cosφ = = -
Câu 2: Tìm góc giữa đường thẳng d: 6x - 5y + 15 = 0 và ∆2:
A. 900 B. 300 C. 450 D. 600
Lời giải:
Đáp án: A
Vectơ pháp tuyến của đường thẳng d là n1→ = (6; -5)
Vectơ pháp tuyến của đường thẳng ∆2 là n2→ = (5; 6)
Ta có n1→ . n2→ ⇒ d ⊥ ∆2.
Câu 3: Tìm côsin góc giữa 2 đường thẳng d1: và d2:
A. B. C. D. tất cả sai
Lời giải:
Đáp án: D
Vectơ chỉ phương của d1; d2 lần lượt là u1→(3; 4); u2→(1; 1).
Cos( d1; d2) = |cos(u1→; u2→) | =
Câu 4: Góc giữa hai đường thẳng: (a): = 1 và (b): gần với số đo nào nhất?
A. 630 B. 250 C. 600 D. 900
Lời giải:
Đáp án: A
Đường thẳng (a) ⇔ 4x - 3y + 12 = 0 có VTPT n→( 4; -3).
Đường thẳng (b) có VTCP u→( 6; -12) nên VTPT n'→( 2; 1)
⇒ cos(a; b) =
⇒ Góc giữa hai đường thẳng đã cho xấp xỉ 630.
Câu 5: Cho đường thẳng (a): x - y - 210 = 0 và đường thẳng (b): x + my + 47 = 0. Tìm m để góc giữa hai đường thẳng trên bằng 450.
A. m = -1 B. m = 0 C. m = 1 D. m = 2
Lời giải:
Đáp án: B
Đường thẳng (a) có VTPT n→( 1; -1)
Đường thẳng (b) có VTPT n'→( 1; m)
Để góc giữa hai đường thẳng a và b bằng 450 thì
Cos450 =
⇔ |1 - m| =
⇔ 1- 2m + m2 = 1 + m2
⇔ -2m = 0 ⇔ m = 0
Câu 6: Cho đường thẳng (a): y = -x + 30 và (b): y = 3x + 600. Tính tan của góc tạo bởi hai đường thẳng (a) và (b)?
A. 1 B. 2 C. 3 D. 4
Lời giải:
Đáp án: B
Gọi α là góc tạo bởi hai đường thẳng (a) và (b).
Đường thẳng (a) có hệ số góc k1 = -1 và đường thẳng (b) có hệ số góc k2 = 3.
⇒ Tan của góc tạo bởi hai đường thẳng trên là:
Tgα = = 2
Câu 7: Cho hai đường thẳng (d1): y = -2x + 80 và (d2) : x + y - 10 = 0. Tính tan của góc tạo bởi hai đường thẳng d1 và d2?
A. B. 1 C. 3 D.
Lời giải:
Đáp án: D
Đường thẳng (d1) có hệ số góc k1 = - 2.
Đường thẳng (d2) ⇔ y = -x + 10 có hệ số góc k2 = -1.
⇒ tan của góc tạo bởi hai đường thẳng trên là:
tgα =
Câu 8: Cho đường thẳng (a): và đường thẳng ( b): 2x + y - 40 = 0.Hỏi có bao nhiêu giá trị của m để góc giữa hai đường thẳng trên bằng 450.
A. 1 B. 2 C. 3 D. 4
Lời giải:
Đáp án: B
+ Đường thẳng (a) có VTCP u→( m; 2) nên có VTPT n→( 2; -m) .
+ Đường thẳng (b) có VTPT n'→( 2;1).
+ Để góc giữa hai đường thẳng trên bằng 450 thì:
Cos450 =
⇔ .√5 = √2|4 - m|
⇔ ( 4 + m2).5 = 2(16 - 8m + m2)
⇔ 20 + 5m2 = 32 - 16m + 2m2
⇔ 3m2 + 16m - 12 = 0 ⇔ m = hoặc m = - 6
D. Bài tập tự luyện
Bài 1. Tính góc giữa hai đường thẳng (a): 5x + 2y – 3 = 0 và (b): 2x + y + 7 = 0.
Bài 2. Tìm côsin góc giữa 2 đường thẳng d1: 10x + 5y – 1 = 0 và d2: {x = 2t + 3; y = 3 + t}.
Bài 3. Tính góc giữa hai đường thẳng: 5x + 2y – 7 = 0 và 3x – 5y + 6 = 0.
Bài 4. Cho đường thẳng (a): 3x + 2y – 10 = 0 và đường thẳng (b): 5x + my + 9 = 0. Tìm m để góc giữa hai đường thẳng trên bằng 45°?
Bài 5. Cho đường thẳng (a): y = 3x + 5 và (b): y = –2x + 4. Tính tan của góc tạo bởi hai đường thẳng (a) và (b).
Xem thêm các dạng bài tập Toán 10 có đáp án hay khác:
Xem thêm các chương trình khác:
- Các dạng bài tập Tiếng Anh thông dụng nhất
- 3000 câu hỏi ôn tập môn Tiếng Anh có đáp án
- Toàn bộ kiến thức về cụm động từ | Định nghĩa và cách dùng
- 500 đoạn văn Tiếng Anh thông dụng nhất và cách làm
- 1000 câu hỏi ôn tập môn Công nghệ có đáp án
- 1000 câu hỏi ôn tập Giáo dục công dân
- 3000 câu hỏi ôn tập môn Vật lí có đáp án
- Tổng hợp Dạng bài - Công thức môn Vật lí
- Phương trình hóa học | Tổng hợp PTHH của các chất hữu cơ, vô cơ chính xác nhất
- Đồng phân & Công thức cấu tạo của các chất hữu cơ
- Nhận biết các chất Hóa học
- Cấu hình electron
- So sánh bán kính nguyên tử và bán kính ion
- 1000 câu hỏi ôn tập môn Hóa có đáp án
- Wiki các chất hóa học | Định nghĩa, tính chất, nhận biết, điều chế, ứng dụng
- Cách đọc danh pháp hóa học (chương trình mới) đầy đủ nhất
- Công thức Lewis của một số chất thường gặp (chương trình mới)
- Công thức electron của một số chất thường gặp (chương trình mới)
- Công thức cấu tạo của một số chất thường gặp (chương trình mới)
- Công thức hợp chất khí với hidro của các nguyên tố (phổ biến) | Cách viết công thức hợp chất khí với hidro
- Công thức hidroxit cao nhất của các nguyên tố (phổ biến) | Cách viết công thức hidroxit cao nhất
- Công thức oxit cao nhất của các nguyên tố (phổ biến) | Cách viết công thức oxit cao nhất
- 2000 câu hỏi ôn tập môn Tin học có đáp án
- 3000 câu hỏi ôn tập môn Lịch sử có đáp án
- 3000 câu hỏi ôn tập môn Địa lí có đáp án
- 2000 câu hỏi ôn tập môn Sinh học có đáp án
- Tổng hợp Dạng bài - Công thức môn Sinh học
- Tổng hợp về các tác giả văn học
- 3000 câu hỏi ôn tập môn Ngữ văn có đáp án
- Tổng hợp kiến thức Ngữ Văn
- Trò chơi Powerpoint | Game Powerpoint
- Tổng hợp bài thu hoạch BDTX Giáo viên mầm non (2024) theo Thông tư 12
- Tổng hợp bài thu hoạch BDTX Giáo viên tiểu học (2024)
- Tổng hợp bài thu hoạch BDTX Giáo viên THCS (2024)
- Tổng hợp bài thu hoạch BDTX Giáo viên THPT (2024)