Bội số là gì? Cách tìm bội số. Bội chung nhỏ nhất (BCNN)
Với tài liệu về Bội số bao gồm: lý thuyết và bài tập cũng như những định nghĩa, tính chất, các dạng bài sẽ giúp bạn nắm vững kiến thức và học tốt môn Toán hơn.
Bội số
I. Lý thuyết Bội số
1. Khái niệm
Nếu có số tự nhiên a chia hết cho số tự nhiên b thì ta nói a là bội của b.
2. Cách tìm bội số
a kí hiệu tập hợp các bội của a là B(a).
Ví dụ: Tìm các bội nhỏ hơn 30 của 7.
Lần lượt nhân 7 với 0, 1, 2, 3, 4, ta được các bội nhỏ hơn 30 của 7 là: 0, 7, 14, 21, 28 (bội tiếp theo của 7 là 35 lớn hơn 30).
Ta có thể tìm các bội của một số khác 0 bằng cách nhân số đó lần lượt với 0, 1, 2, 3...
II. Bội chung nhỏ nhất
1. Cách tìm bội chung
Bội chung của hai hay nhiều số là bội của tất cả các số đó.
2. Bội chung nhỏ nhất là gì?
Bội chung nhỏ nhất của hai hay nhiều số là số nhỏ nhất khác 0 trong tập hợp các bội chung của các số đó.
Chú ý:
Mọi số tự nhiên đều là bội của 1. Do đó: Với mọi số tự nhiên a và b (khác 0), ta có:
BCNN(a, 1) = a ; BCNN(a, b, 1) = BCNN(a, b)
3. Cách tìm bội chung nhỏ nhất
Muốn tìm BCNN của hai hay nhiều số lớn hơn 1, ta thực hiện ba bước sau:
Bước 1: Phân tích mỗi số ra thừa số nguyên tố.
Bước 2: Chọn ra các thừa số nguyên tố chung và riêng.
Bước 3: Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ lớn nhất của nó. Tích đó là BCNN phải tìm.
4. Ví dụ minh họa
Ví dụ 1: Tìm bội chung nhỏ nhất của:
a) 60 và 280
b) 84 và 108
c) 13 và 15
Giải:
a) 60 = 2³ × 3 × 5
280 = 2² × 5 × 7
BCNN (60, 280) = 2³ × 3 × 5 × 7 = 840
b) 84 = 2² × 3 × 7
108 = 22.33
BCNN (84, 108) = 2² × 3³ × 7 = 756
c) BCNN (13, 15) = 195
Ví dụ 2: Tìm bội chung nhỏ nhất của:
a) 10, 12, 15
b) 8, 9, 11
c) 24, 40, 168.
Giải
a) 10 = 2 × 5
12 = 2² × 3
15 = 3 × 5
BCNN(10,12,15) = 2² × 3 × 5 = 60
b) BCNN(8, 9, 11) = 8 × 9 × 11 = 792
c) 24 = 2³ × 3
40 = 2³ × 5
168 = 2³ × 3 × 7
BCNN(24, 40,168) = 2³ × 3 × 5 × 7 = 840
III. Bài tập vận dụng
Bài 1. Cho các số sau 13; 19; 20; 36; 121; 125; 201; 205; 206 chỉ ra các số thuộc tập hợp sau:
1. là bội của 3
2. Là bội của 5
Giải
1. Vì trong các số đã cho 36; 201 chia hết cho 3 nên B (3) = {36; 201}
2. Vì trong các số đã cho 20; 125; 205 chia hết cho 5 nên B (5) = {20; 125; 205}
Bài 2: Tìm các bội chung nhỏ hơn 500 của 30 và 45.
Giải
BCNN (30, 45) = 90
Do đó các bội chung nhỏ hơn 500 của 30 và 45 là 0, 90, 180, 270, 360, 450.
Bài 3: Học sinh lớp 6C khi xếp hàng 2, hàng 3, hàng 4, hàng 8 đều vừa đủ hàng. Biết số học sinh lớp đó trong khoảng từ 35 đến 60. Tính số học sinh lớp 6C.
Giải
Vì khi học sinh lớp 6C xếp hàng 2, hàng 3, hàng 4, hàng 8 đều đủ hàng có nghĩa là số học sinh ấy là bội chung của 2, 3, 4, 8.
BCNN(2, 3, 4, 8) = 24. Mỗi bội của 24 cũng là một bội chung của 2, 3, 4, 8. Vì số học sinh của lớp 6C trong khoảng 35 đến 60 nên ta phải chọn bội của 24 thỏa mãn điều kiện này. Đó là 24 × 2 = 48.
Vậy lớp 6C có 48 học sinh.
Bài 4. Tìm các số tự nhiên x sao cho:
x € Ư (12) và 2 <= x <= 8
x € B (5) và 20 <= x <= 36
x chia hết cho 5 và 13 < x <= 78
12 chia hết cho x và x >4
Đáp án
Ta có Ư (12) = {1; 2; 3; 4; 6; 12}
Vì x € Ư (12) và 2 <= x <= 8 nên x € {2; 3; 4; 6}
2. x € B(5) và 20 < = x <= 36
Vì x € B(5) = {0; 5; 10; 15; 20; 25; 30; 35; 40…}
Mặt khác 20 <= x <= 36 => x € {20; 25; 30; 35}
3. ta có, x chia hết cho 5 và 13 < x <= 78
Vì x chia hết cho 5 nên x € B(5) => x € {0; 5; 10; 15; 20; 25; 30; 35; 40…}
Mặt khác 13 < x <= 78 => x € {15; 20; 25; 30; 35; 40; 45; 50; 55; 60; 65; 70; 75}
4. 12 chia hết cho x và x > 4
Vì 12 chia hết cho x nên x € Ư (12) = {1; 2; 3; 4; 6; 12} và x > 4 nên x € {6; 12}
Bài 5. Tìm tập hợp các số tự nhiên vừa là ước của 100 vừa là bội của 25
Giải
Gọi x là số tự nhiên cần tìm,
Ta có Ư (100) = {1; 2; 4; 5; 10; 20; 25; 50; 100}
Vì x thuộc B(25) nên x chia hết cho 25
=> x € {25; 50; 100}
Bài 6. Năm nay Bình 12 tuổi. Tuổi của mẹ Bình là bội số của tuổi Bình. Tìm tuổi của mẹ Bình biết tuổi của mẹ lớn hơn 30 và nhỏ hơn 45.
Giải
Gọi x là số tuổi của mẹ Bình (x € N, 30 < x < 45)
Tuổi của mẹ Bình là bội số của tuổi Bình nên x € B(12)
Mà 30 < x< 45 nên x = 36.
Vậy mẹ Bình 36 tuổi
Bài 7. Học sinh lớp 6A nhận được phần hưởng của nhà trường và mỗi em nhận được phần thưởng như nhau. Cô hiệu trưởng đã chia hết 129 quyển vở và 215 bút chì màu. Hỏi số học sinh lớp 6A là bao nhiêu.
Giải
Ta thấy số phần thưởng là ƯC (129; 215)
Có ƯC (129; 125) = {1; 43}
Vì số học sinh lớp 6A không thể bằng 1 nên số học sinh lớp 6A là 43 học sinh.
Bài 8: Tính số học sinh của một trường biết rằng mỗi lần xếp hàng 4, hàng 5, hàng 6, hàng 7 đều vừa đủ hàng và số học sinh của trường khoảng từ 415 đến 421 em.
Xem thêm các chương trình khác:
- Các dạng bài tập Tiếng Anh thông dụng nhất
- 3000 câu hỏi ôn tập môn Tiếng Anh có đáp án
- Toàn bộ kiến thức về cụm động từ | Định nghĩa và cách dùng
- 500 đoạn văn Tiếng Anh thông dụng nhất và cách làm
- 1000 câu hỏi ôn tập môn Công nghệ có đáp án
- 1000 câu hỏi ôn tập Giáo dục công dân
- 3000 câu hỏi ôn tập môn Vật lí có đáp án
- Tổng hợp Dạng bài - Công thức môn Vật lí
- Phương trình hóa học | Tổng hợp PTHH của các chất hữu cơ, vô cơ chính xác nhất
- Đồng phân & Công thức cấu tạo của các chất hữu cơ
- Nhận biết các chất Hóa học
- Cấu hình electron
- So sánh bán kính nguyên tử và bán kính ion
- 1000 câu hỏi ôn tập môn Hóa có đáp án
- Wiki các chất hóa học | Định nghĩa, tính chất, nhận biết, điều chế, ứng dụng
- Cách đọc danh pháp hóa học (chương trình mới) đầy đủ nhất
- Công thức Lewis của một số chất thường gặp (chương trình mới)
- Công thức electron của một số chất thường gặp (chương trình mới)
- Công thức cấu tạo của một số chất thường gặp (chương trình mới)
- Công thức hợp chất khí với hidro của các nguyên tố (phổ biến) | Cách viết công thức hợp chất khí với hidro
- Công thức hidroxit cao nhất của các nguyên tố (phổ biến) | Cách viết công thức hidroxit cao nhất
- Công thức oxit cao nhất của các nguyên tố (phổ biến) | Cách viết công thức oxit cao nhất
- 2000 câu hỏi ôn tập môn Tin học có đáp án
- 3000 câu hỏi ôn tập môn Lịch sử có đáp án
- 3000 câu hỏi ôn tập môn Địa lí có đáp án
- 2000 câu hỏi ôn tập môn Sinh học có đáp án
- Tổng hợp Dạng bài - Công thức môn Sinh học
- Tổng hợp về các tác giả văn học
- 3000 câu hỏi ôn tập môn Ngữ văn có đáp án
- Tổng hợp kiến thức Ngữ Văn
- Trò chơi Powerpoint | Game Powerpoint
- Tổng hợp bài thu hoạch BDTX Giáo viên mầm non (2024) theo Thông tư 12
- Tổng hợp bài thu hoạch BDTX Giáo viên tiểu học (2024)
- Tổng hợp bài thu hoạch BDTX Giáo viên THCS (2024)
- Tổng hợp bài thu hoạch BDTX Giáo viên THPT (2024)