Lý thuyết, cách xác định và bài tập các trường hợp khoảng cách giữa đường thẳng và mặt phẳng
Với tài liệu về các trường hợp khoảng cách giữa đường thẳng và mặt phẳng gồm: lý thuyết và bài tập cũng như những định nghĩa, tính chất, các dạng bài sẽ giúp bạn nắm vững kiến thức và học tốt môn Toán hơn.
Khoảng cách giữa đường thẳng và mặt phẳng
A. Phương pháp giải
Cho đường thẳng d // (P); để tính khoảng cách giữa d và (P) ta thực hiện các bước:
+ Bước 1: Chọn một điểm A trên d, sao cho khoảng cách từ A đến (P) có thể được xác định dễ nhất.
+ Bước 2: Kết luận: d(d; (P)) = d(A; (P)).
B. Ví dụ minh họa
Ví dụ 1: Cho hình chóp S. ABCD có SA ⊥ (ABCD), đáy ABCD là hình thang vuông tại A và B; AB = a. Gọi I và J lần lượt là trung điểm của AB và CD. Tính khoảng cách giữa đường thẳng IJ và (SAD)
Hướng dẫn giải
Chọn C
Ta có: I và J lần lượt là trung điểm của AB và CD nên IJ là đường trung bình của hình thang ABCD
Ví dụ 2: Cho hình thang vuông ABCD vuông ở A và D; AD = 2a. Trên đường thẳng vuông góc tại D với (ABCD) lấy điểm S với SD = a√2. Tính khỏang cách giữa đường thẳng CD và (SAB).
Hướng dẫn giải
Chọn A
Vì DC // AB nên DC // (SAB)
⇒ d(DC; (SAB)) = d(D; (SAB))
Kẻ DH ⊥ SA
Do AB ⊥ AD và AB ⊥ SA nên AB ⊥ (SAD)
⇒ DH ⊥ AB lại có DH ⊥ SA
⇒ DH ⊥ (SAB)
Nên d(CD; (SAB)) = DH.
Trong tam giác vuông SAD ta có:
Ví dụ 3: Cho hình chóp O.ABC có đường cao OH = 2a/√3 . Gọi M và N lần lượt là trung điểm của OA và OB. Khoảng cách giữa đường thẳng MN và (ABC) bằng:
Hướng dẫn giải
Chọn D
Vì M và N lần lượt là trung điểm của OA và OB nên
MN // AB
⇒ MN // (ABC)
Khi đó, ta có:
(vì M là trung điểm của OA).
Ví dụ 4: Cho hình chóp tứ giác đều S.ABCD có AB = SA = 2a . Khoảng cách từ đường thẳng AB đến (SCD) bằng bao nhiêu?
Hướng dẫn giải
Gọi O là giao điểm của AC và BD; gọi I và M lần lượt là trung điểm cạnh AB và CD. Khi đó; IM // AD //BC
Do S.ABCD là hình chóp tứ giác đều có O là tâm của hình vuông nên SO ⊥ (ABCD) .
+ Do tam giác SAB là đều cạnh 2a
Chọn đáp án D
C. Bài tập vận dụng
Câu 1: Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, cạnh a. Biết hai mặt bên (SAB) và (SAD) cùng vuông góc với mặt phẳng đáy và SA = a√2. Gọi E là trung điểm AD. Khoảng cách giữa AB và (SOE) là
Lời giải:
+ Vì hai mặt bên (SAB) và (SAD) cùng vuông góc với mặt phẳng đáy .
mà (SAB) ∩ (SAD) = SA
⇒ SA ⊥ (ABCD) .
+ Do E là trung điểm của AD khi đó
Tam giác ABD có EO là đường trung bình
⇒ EO // AB ⇒ AB // (SOE)
⇒ d(AB, (SOE)) = d(A; (SOE)) = AH
với H là hình chiếu của A lên SE.
Câu 2: Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng 1 (đvdt). Khoảng cách giữa AA’ và (BB’D’) bằng:
Lời giải:
Chọn B
Ta có: AA’ // BB’ mà BB’ ⊂ ( BDD’B’)
⇒ AA’ // (BDD’B’)
⇒ d( AA’; (BD’B’)) = d(A; (BDD’B’)
Gọi O là giao điểm của AC và BD
⇒ AO ⊥ (BDD’B’) (tính chất hình lập phương)
Câu 3: Cho hình chóp S.ABCD có SA ⊥ (ABCD) đáy ABCD là hình chữ nhật với AC = a√5 và BC = a√2. Tính khoảng cách giữa (SDA) và BC?
Lời giải:
+ Ta có: BC // AD nên BC // (SAD)
⇒ d(BC; (SAD)) = d(B; SAD))
+ Ta chứng minh BA ⊥ (SAD) :
Do BA ⊥ AD (vì ABCD là hình chữ nhật)
Và BA ⊥ SA (vì SA ⊥ (ABCD))
⇒ BA ⊥ (SAD)
⇒ d(B; (SAD)) = BA
Áp dụng định lí Pytago trong tam giác vuông ABC có:
AB2 = AC2 - BC2 = 5a2 - 2a2 = 3a2
⇒ AB = √3 a
⇒ d(CB; (SAD)) = AB = √3 a
Đáp án D
Câu 4: Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật và AB = 2a; BC = a . Các cạnh bên của hình chóp bằng nhau và bằng a√2 . Gọi E và F lần lượt là trung điểm của AB và CD; K là điểm bất kỳ trên BC. Khoảng cách giữa hai đường thẳng EF và (SBK) là:
Lời giải:
Gọi O là giao điểm của AC và BD; I là trung điểm cạnh BC
+ Do SA = SB = SC = SD và OA = OB = OC = OD nên SO ⊥ (ABCD)
+ Ta chứng minh BC ⊥ (SOI)
- Tam giác SBC cân tại S có SI là đường trung tuyến nên đồng thời là đường cao: BC ⊥ SI (1).
- Lại có: BC ⊥ SO (vì SO ⊥ (ABCD)) (2)
Từ ( 1) và ( 2) suy ra: BC ⊥ (SOI)
Mà OH ⊂ (SOI) nên BC ⊥ OH
⇒ OH ⊥ (SBC)
Do EF // BK nên EF // (SBK)
⇒ d(EF; (SBK)) = d(O; (SBK)) = OH
Chọn đáp án D.
Câu 5: Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B; AB= a cạnh bên SA vuông góc với đáy và SA = a√2. Gọi M và N lần lượt là trung điểm của AB; AC. Khoảng cách giữa BC và (SMN) bằng bao nhiêu?
Lời giải:
+ Tam giác ABC có MN là đường trung bình nên MN // BC
⇒ BC // (SMN) nên :
d(BC; (SMN)) = d(B; (SMN)) = d(A; (SMN))
Gọi H là hình chiếu vuông góc của A trên đoạn SM.
+ Ta chứng minh: MN ⊥ (SAM):
Chọn đáp án A
Câu 6: Cho hình chóp S.ABCD có đáy là hình vuông ABCD cạnh a. Các cạnh bên SA = SB = SC = SD = a√2. Khoảng cách giữa hai đường thẳng AD và (SBC) là:
Lời giải:
+ Do AD // BC nên AD // (SBC)
⇒ d (AD, (SBC)) = d(H; (SBC))
trong đó H là trung điểm AD.
+ Gọi M là trung điểm của BC và K là hình chiếu vuông góc của H lên SM
⇒ d(H; (SBC)) = HK.
+ Diện tích tam giác SMH là:
Chọn đáp án C
Câu 7: Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SD = a√17/2 . Hình chiếu vuông góc H của đỉnh S lên mặt phẳng (ABCD) là trung điểm của cạnh AB. Gọi K là trung điểm của AD. Tính khoảng cách giữa hai đường HK và (SBD) theo a
Lời giải:
+ Ta có: H và K lần lượt là trung điểm của AB và AD nên HK là đường trung bình của tam giác ABD
⇒ HK // BD ⇒ HK // (SBD)
⇒ d(HK; (SBD)) = d(H, (SBD))
Kẻ HI ⊥ BD và HJ ⊥ SI
Chọn đáp án C
Câu 8: Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a và ∠ABC = 60° Hai mặt phẳng (SAC) và (SBD) cùng vuông góc với đáy, góc giữa hai mặt phẳng (SAB) và (ABCD) bằng 30°. Khoảng cách giữa hai đường thẳng CD và (SAB) theo a bằng:
Lời giải:
Gọi O là giao điểm của AC và BD
Kẻ: OI ⊥ AB; OH ⊥ SI
+ Do CD // AB nên CD // (SAB)
⇒ d(CD, (SAB)) = d(C; (SAB)) = 2d( O; (SAB))
Ta có: AB ⊥ SO , AB ⊥ OI ⇒ AB ⊥ (SOI) ⇒ AB ⊥ OH
Nên OH ⊥ (SAB) ⇒ d(O, (SAB)) = OH
Mà tam giác ACB cân tại B có ∠ABC = 60° nên tam giác ABC đều
⇒ OC = (1/2)AC = (1/2)AB = a/2 .
+ xét tam giác OAB có:
Chọn đáp án B
Câu 9: Cho hình chóp tứ giác đều S.ABCD có đường cao SO = 2, mặt bên hợp với mặt đáy một góc 60°. Khi đó khoảng cách giữa hai đường thẳng AB và (SCD) bằng
Lời giải:
+ Gọi I là trung điểm của CD . Ta có:
⇒ ((SCD), (ABCD)) = (OI, SI) = 60°
+ Ta có: AB // CD nên AB // (SCD)
⇒ d(AB, (SCD)) = d(A, ( SCD)) = 2.d(O, (SCD))
+ Trong mp (SOI) , gọi H là hình chiếu vuông góc của O lên SI
+ Tam giác SOI vuông tại O, có đường cao OH nên
Do đó: d(AB; (SCD)) = 2d(O; (SCD)) = 2.OH = 2.1 = 2
Chọn B
D. Bài tập tự luyện
Bài 1. Cho hình thang vuông ABCD vuông ở A và D; AD = a. Trên đường thẳng vuông góc tại D với (ABCD) lấy điểm S với SD = . Tính khỏang cách giữa đường thẳng CD và (SAB).
Bài 2. Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, cạnh a. Biết hai mặt bên (SAB) và (SAD) cùng vuông góc với mặt phẳng đáy và SA = . Gọi E là trung điểm AD. Khoảng cách giữa AB và (SOE) bằng bao nhiêu?
Bài 3. Cho hình chóp S.ABCD có SA ⊥ (ABCD) đáy ABCD là hình chữ nhật với AC = và BC = . Tính khoảng cách giữa (SDA) và BC.
Bài 4. Cho hình chóp tứ giác đều S.ABCD có đường cao SO = 2, mặt bên hợp với mặt đáy một góc 60°. Tính khoảng cách giữa hai đường thẳng AB và (SCD).
Bài 5. Cho hình chóp tứ giác đều S.ABCD có AB = SA = a . Khoảng cách từ đường thẳng AB đến (SCD) bằng bao nhiêu?
Xem thêm các chương trình khác:
- Các dạng bài tập Tiếng Anh thông dụng nhất
- 3000 câu hỏi ôn tập môn Tiếng Anh có đáp án
- Toàn bộ kiến thức về cụm động từ | Định nghĩa và cách dùng
- 500 đoạn văn Tiếng Anh thông dụng nhất và cách làm
- 1000 câu hỏi ôn tập môn Công nghệ có đáp án
- 1000 câu hỏi ôn tập Giáo dục công dân
- 3000 câu hỏi ôn tập môn Vật lí có đáp án
- Tổng hợp Dạng bài - Công thức môn Vật lí
- Phương trình hóa học | Tổng hợp PTHH của các chất hữu cơ, vô cơ chính xác nhất
- Đồng phân & Công thức cấu tạo của các chất hữu cơ
- Nhận biết các chất Hóa học
- Cấu hình electron
- So sánh bán kính nguyên tử và bán kính ion
- 1000 câu hỏi ôn tập môn Hóa có đáp án
- Wiki các chất hóa học | Định nghĩa, tính chất, nhận biết, điều chế, ứng dụng
- Cách đọc danh pháp hóa học (chương trình mới) đầy đủ nhất
- Công thức Lewis của một số chất thường gặp (chương trình mới)
- Công thức electron của một số chất thường gặp (chương trình mới)
- Công thức cấu tạo của một số chất thường gặp (chương trình mới)
- Công thức hợp chất khí với hidro của các nguyên tố (phổ biến) | Cách viết công thức hợp chất khí với hidro
- Công thức hidroxit cao nhất của các nguyên tố (phổ biến) | Cách viết công thức hidroxit cao nhất
- Công thức oxit cao nhất của các nguyên tố (phổ biến) | Cách viết công thức oxit cao nhất
- 2000 câu hỏi ôn tập môn Tin học có đáp án
- 3000 câu hỏi ôn tập môn Lịch sử có đáp án
- 3000 câu hỏi ôn tập môn Địa lí có đáp án
- 2000 câu hỏi ôn tập môn Sinh học có đáp án
- Tổng hợp Dạng bài - Công thức môn Sinh học
- Tổng hợp về các tác giả văn học
- 3000 câu hỏi ôn tập môn Ngữ văn có đáp án
- Tổng hợp kiến thức Ngữ Văn
- Trò chơi Powerpoint | Game Powerpoint
- Tổng hợp bài thu hoạch BDTX Giáo viên mầm non (2024) theo Thông tư 12
- Tổng hợp bài thu hoạch BDTX Giáo viên tiểu học (2024)
- Tổng hợp bài thu hoạch BDTX Giáo viên THCS (2024)
- Tổng hợp bài thu hoạch BDTX Giáo viên THPT (2024)