Tìm m để phương trình có 2 nghiệm trái dấu

Với tài liệu về Tìm m để phương trình có 2 nghiệm trái dấu bao gồm: lý thuyết và bài tập cũng như những định nghĩa, tính chất, các dạng bài sẽ giúp bạn nắm vững kiến thức và học tốt môn Toán hơn.

1 127 25/07/2024


Tìm m để phương trình có hai nghiệm trái dấu

I. Lý thuyết

Điều kiện để phương trình có hai nghiệm trái dấu, cùng dấu, cùng dương, cùng âm,…

+ Để phương trình có hai nghiệm phân biệt trái dấu \Leftrightarrow P < 0

+ Để phương trình có hai nghiệm phân biệt cùng dấu \Leftrightarrow \left\{ \begin{array}{l}
\Delta  > 0\\
P > 0
\end{array} \right.

+ Để phương trình có hai nghiệm phân biệt cùng dấu dương \Leftrightarrow \left\{ \begin{array}{l}
\Delta  > 0\\
P > 0\\
S > 0
\end{array} \right.

+ Để phương trình có hai nghiệm phân biệt cùng dấu âm \Leftrightarrow \left\{ \begin{array}{l}
\Delta  > 0\\
P > 0\\
S < 0
\end{array} \right.

II. Ví dụ minh họa

Ví dụ 1: Tìm m để phương trình {x^2} - \left( {{m^2} + 1} \right)x + {m^2} - 7m + 12 = 0 có 2 nghiệm trái dấu

Lời giải:

Để phương trình có hai nghiệm phân biệt trái dấu \Leftrightarrow P < 0

\begin{array}{l}
 \Leftrightarrow {m^2} - 7m + 12 < 0\\
 \Leftrightarrow \left( {m - 3} \right)\left( {m - 4} \right) < 0
\end{array}

Xảy ra hai trường hợp:

Trường hợp 1: \left\{ \begin{array}{l}
m - 3 > 0\\
m - 4 < 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
m > 3\\
m < 4
\end{array} \right. \Leftrightarrow 3 < m < 4

Trường hợp 2: \left\{ \begin{array}{l}
m - 3 < 0\\
m - 4 > 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
m < 3\\
m > 4
\end{array} \right.(vô lý)

Vậy với 3 < m < 4 thì phương trình có hai nghiệm trái dấu

Ví dụ 2: Tìm m để phương trình 3{x^2} - 4mx + {m^2} - 2m - 3 = 0 có hai nghiệm phân biệt cùng dấu.

Lời giải:

3{x^2} - 4mx + {m^2} - 2m - 3 = 0

Để phương trình có hai nghiệm phân biệt \Leftrightarrow \Delta ' > 0

\Delta ' = 4{m^2} - 3\left( {{m^2} - 2m - 3} \right)

\begin{gathered}
   = 4{m^2} - 3{m^2} + 6m + 9 \hfill \\
   = {m^2} + 6m + 9 \hfill \\
   = {\left( {m - 3} \right)^2} > 0\forall m \ne 3 \hfill \\ 
\end{gathered}

Với mọi m ≠ 3, phương trình có hai nghiệm phân biệt thỏa mãn hệ thức Vi-ét:

\left\{ \begin{gathered}
  {x_1} + {x_2} = \frac{{ - b}}{a} = \frac{{4m}}{3} \hfill \\
  {x_1}{x_2} = \frac{c}{a} = \frac{{{m^2} - 2m - 3}}{3} \hfill \\ 
\end{gathered}  \right.

Để phương trình có hai nghiệm phân biệt cùng dấu khi và chỉ khi:

P > 0 \Leftrightarrow 3\left( {{m^2} - 2m - 3} \right) > 0

Xảy ra hai trường hợp:

Trường hợp 1: \left\{ \begin{gathered}
  m + 1 > 0 \hfill \\
  m - 3 > 0 \hfill \\ 
\end{gathered}  \right. \Leftrightarrow \left\{ \begin{gathered}
  m >  - 1 \hfill \\
  m > 3 \hfill \\ 
\end{gathered}  \right. \Rightarrow m > 3

Trường hợp 2: \left\{ \begin{gathered}
  m + 1 < 0 \hfill \\
  m - 3 < 0 \hfill \\ 
\end{gathered}  \right. \Leftrightarrow \left\{ \begin{gathered}
  m <  - 1 \hfill \\
  m < 3 \hfill \\ 
\end{gathered}  \right. \Rightarrow m <  - 1

Vậy với m < -1 hoặc m < 3 nên phương trình có hai nghiệm phân biệt cùng dấu

III. Bài tập vận dụng

Bài 1: Tìm m để phương trình {x^2} - \left( {{m^2} + 1} \right)x + {m^2} - 7m + 12 = 0 có 2 nghiệm trái dấu

Giải

Để phương trình có hai nghiệm phân biệt trái dấu \Leftrightarrow P < 0.

Để phương trình có hai nghiệm phân biệt trái dấu \Leftrightarrow P < 0

\begin{array}{l}
 \Leftrightarrow {m^2} - 7m + 12 < 0\\
 \Leftrightarrow \left( {m - 3} \right)\left( {m - 4} \right) < 0
\end{array}

Xảy ra hai trường hợp:

Trường hợp 1: \left\{ \begin{array}{l}
m - 3 > 0\\
m - 4 < 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
m > 3\\
m < 4
\end{array} \right. \Leftrightarrow 3 < m < 4

Trường hợp 2: \left\{ \begin{array}{l}
m - 3 < 0\\
m - 4 > 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
m < 3\\
m > 4
\end{array} \right.(vô lý)

Vậy với 3 < m < 4 thì phương trình có hai nghiệm trái dấu

Bài 2: Tìm m để phương trình 3{x^2} - 4mx + {m^2} - 2m - 3 = 0 có hai nghiệm phân biệt cùng dấu.

Giải

3{x^2} - 4mx + {m^2} - 2m - 3 = 0

Để phương trình có hai nghiệm phân biệt \Leftrightarrow \Delta ' > 0

\Delta ' = 4{m^2} - 3\left( {{m^2} - 2m - 3} \right)

\begin{gathered}
   = 4{m^2} - 3{m^2} + 6m + 9 \hfill \\
   = {m^2} + 6m + 9 \hfill \\
   = {\left( {m - 3} \right)^2} > 0\forall m \ne 3 \hfill \\ 
\end{gathered}

Với mọi m ≠ 3, phương trình có hai nghiệm phân biệt thỏa mãn hệ thức Vi-ét:

\left\{ \begin{gathered}
  {x_1} + {x_2} = \frac{{ - b}}{a} = \frac{{4m}}{3} \hfill \\
  {x_1}{x_2} = \frac{c}{a} = \frac{{{m^2} - 2m - 3}}{3} \hfill \\ 
\end{gathered}  \right.

Để phương trình có hai nghiệm phân biệt cùng dấu khi và chỉ khi:

P > 0 \Leftrightarrow 3\left( {{m^2} - 2m - 3} \right) > 0

Xảy ra hai trường hợp:

Trường hợp 1: \left\{ \begin{gathered}
  m + 1 > 0 \hfill \\
  m - 3 > 0 \hfill \\ 
\end{gathered}  \right. \Leftrightarrow \left\{ \begin{gathered}
  m >  - 1 \hfill \\
  m > 3 \hfill \\ 
\end{gathered}  \right. \Rightarrow m > 3

Trường hợp 2: \left\{ \begin{gathered}
  m + 1 < 0 \hfill \\
  m - 3 < 0 \hfill \\ 
\end{gathered}  \right. \Leftrightarrow \left\{ \begin{gathered}
  m <  - 1 \hfill \\
  m < 3 \hfill \\ 
\end{gathered}  \right. \Rightarrow m <  - 1

Vậy với m < -1 hoặc m < 3 nên phương trình có hai nghiệm phân biệt cùng dấu

Bài 3: Tìm m để phương trình {x^2} - 2mx + 2m - 4 = 0 có hai nghiệm phân biệt cùng dấu dương.

Giải

Để phương trình có hai nghiệm cùng dấu dương \Leftrightarrow \left\{ \begin{array}{l}
\Delta ' > 0\\
P > 0\\
S > 0
\end{array} \right.

Với \Delta ' > 0 \Leftrightarrow {m^2} - \left( {2m - 4} \right) > 0

\begin{array}{l}
 \Leftrightarrow {m^2} - 2m + 4 > 0\\
 \Leftrightarrow \left( {{m^2} - 2m + 1} \right) + 3 > 0\\
 \Leftrightarrow {\left( {m - 1} \right)^2} + 3 > 0\forall m
\end{array}

Với P > 0 \Leftrightarrow 2m - 4 > 0 \Leftrightarrow m > 2

Với S > 0 \Leftrightarrow 2 > 0 (luôn đúng)

Vậy với m > 2 thì phương trình có hai nghiệm phân biệt cùng dấu dương.

Bài 4: Tìm m để phương trình {x^2} - \left( {2m + 3} \right)x + m = 0 có hai nghiệm phân biệt cùng dấu âm

Lời giải:

Để phương trình có hai nghiệm cùng dấu âm \Leftrightarrow \left\{ \begin{array}{l}
\Delta  > 0\\
P > 0\\
S < 0
\end{array} \right.

Với \Delta  > 0 \Leftrightarrow {\left( {2m + 3} \right)^2} - 4m > 0

\begin{array}{l}
 \Leftrightarrow 4{m^2} + 12m + 9 - 4m > 0\\
 \Leftrightarrow 4{m^2} + 8m + 9 > 0\\
 \Leftrightarrow 4\left( {{m^2} + 2m + 1} \right) + 5 > 0\\
 \Leftrightarrow 4{\left( {m + 1} \right)^2} + 5 > 0\forall m
\end{array}

Với P > 0 \Leftrightarrow m > 0

Với S < 0 \Leftrightarrow 2m + 3 < 0 \Leftrightarrow m < \frac{{ - 3}}{2} kết hợp với m > 0

Vậy không tồn tại m để phương trình có hai nghiệm phân biệt cùng dấu âm

Bài 5: Tìm m để phương trình {x^2} - 2mx + 2m - 4 = 0 có hai nghiệm phân biệt cùng dấu dương.

Lời giải:

Để phương trình có hai nghiệm cùng dấu dương \Leftrightarrow \left\{ \begin{array}{l}
\Delta ' > 0\\
P > 0\\
S > 0
\end{array} \right.

Với \Delta ' > 0 \Leftrightarrow {m^2} - \left( {2m - 4} \right) > 0

\begin{array}{l}
 \Leftrightarrow {m^2} - 2m + 4 > 0\\
 \Leftrightarrow \left( {{m^2} - 2m + 1} \right) + 3 > 0\\
 \Leftrightarrow {\left( {m - 1} \right)^2} + 3 > 0\forall m
\end{array}

Với P > 0 \Leftrightarrow 2m - 4 > 0 \Leftrightarrow m > 2

Với S > 0 \Leftrightarrow 2 > 0 (luôn đúng)

Vậy với m > 2 thì phương trình có hai nghiệm phân biệt cùng dấu dương.

Bài 6. Cho phương trình bậc hai {x^2} - mx - 1 = 0\left( * \right) (m là tham số). Chứng minh phương trình luôn có hai nghiệm trái dấu.

Giải

Ta có a.c = 1.(-1) < 0 với mọi m nên phương trình (*) luôn có hai nghiệm trái dấu với mọi m.

Vậy phương trình có hai nghiệm trái dấu với mọi giá trị của tham số m.

Bài 7. Cho phương trình {x^2} - 2\left( {m - 1} \right)x - 3 - m = 0 (m là tham số). Tìm m để phương trình có hai nghiệm trái dấu.

Giải

Phương trình có hai nghiệm trái dấu khi và chỉ khi

a.c < 0

=> -3 – m < 0

=> m > -3

Vậy m > -3 thì phương trình có hai nghiệm trái dấu.

Bài 8: Tìm m để phương trình {x^2} - 2mx - 6m - 9 = 0 có hai nghiệm phân biệt trái dấu thỏa mãn x_1^2 + x_2^2 = 13

Bài 9: Tìm m để phương trình {x^2} - \left( {2m + 3} \right)x + m = 0 có hai nghiệm phân biệt:

1 127 25/07/2024


Xem thêm các chương trình khác: