Góc giữa hai mặt phẳng (lý thuyết, công thức) các dạng bài tập và cách giải

Với tài liệu về Góc giữa hai mặt phẳng bao gồm: lý thuyết và bài tập cũng như những định nghĩa, tính chất, các dạng bài sẽ giúp bạn nắm vững kiến thức và học tốt môn Toán hơn.

1 5,551 23/09/2024


Góc giữa hai mặt phẳng

Góc giữa hai mặt phẳng: Lý thuyết, cách xác định và các dạng bài tập (ảnh 1)

I. Lý thuyết góc giữa hai mặt phẳng

1. Góc giữa 2 mặt phẳng là gì?

- Khái niệm: Góc giữa 2 mặt phẳng là góc được tạo bởi hai đường thẳng lần lượt vuông góc với hai mặt phẳng đó.

Góc giữa hai mặt phẳng: Lý thuyết, cách xác định và các dạng bài tập (ảnh 1)

Trong không gian 3 chiều, góc giữa 2 mặt phẳng còn được gọi là ‘góc khối’, là phần không gian bị giới hạn bởi 2 mặt phẳng. Góc giữa 2 mặt phẳng được đo bằng góc giữa 2 đường thẳng trên mặt 2 phẳng có cùng trực giao với giao tuyến của 2 mặt phẳng.

2. Tính chất của góc giữa 2 mặt phẳng

Từ định nghĩa trên ta có:

- Góc giữa 2 mặt phẳng song song bằng 0 độ,

- Góc giữa 2 mặt phẳng trùng nhau bằng 0 độ.

3. Cách xác định góc giữa 2 mặt phẳng

Gọi P là mặt phẳng 1, Q là mặt phẳng 2

Trường hợp 1: Hai mặt phẳng (P), (Q) song song hoặc trùng nhau thì góc của 2 mặt phẳng bằng 0,

Trường hợp 2: Hai mặt phẳng (P), (Q) không song song hoặc trùng nhau.

Góc giữa hai mặt phẳng: Lý thuyết, cách xác định và các dạng bài tập (ảnh 1)

Cách 1: Dựng 2 đường thẳng n và p vuông góc lần lượt với 2 mặt phẳng (P), (Q). Khi đó góc giữa 2 mặt phẳng (P), (Q) là góc giữa 2 đường thẳng n và p.

Góc giữa hai mặt phẳng: Lý thuyết, cách xác định và các dạng bài tập (ảnh 1)

Cách 2: Để xác định góc giữa 2 mặt phẳng đầu tiên bạn cần xác định giao tuyến ∆ của 2 mặt phẳng (P) và (Q). Tiếp theo, bạn tìm một mặt phẳng (R) vuông góc với giao tuyến Δ của 2 mặt phẳng (P), (Q) và cắt 2 mặt phẳng tại các giao tuyến a, b.

⇒ Góc giữa 2 mặt phẳng (P), (Q) là góc giữa a và b.

II. Công thức và phương pháp tính góc giữa hai mặt phẳng

1. Công thức tính góc giữa hai mặt phẳng

Góc giữa hai mặt phẳng: Lý thuyết, cách xác định và các dạng bài tập (ảnh 1)

2. Cách tính góc giữa 2 mặt phẳng

a. Sử dụng hệ thức lượng trong tam giác vuông, định lý hàm số sin, hàm số cos.

Ví dụ 1: Cho hình chóp tứ giác đều S.ABCD có đáy là ABCD và độ dài các cạnh đáy bằng a, SA = SB = SC = SD = a. Tính cos góc giữa hai mặt phẳng (SAB) và (SAD).

Góc giữa hai mặt phẳng: Lý thuyết, cách xác định và các dạng bài tập (ảnh 1)

b. Dựng mặt phẳng phụ (R) vuông góc với giao tuyến c mà (Q) giao với (R) = a, (P) giao với (R) = b.

Suy ra

Góc giữa hai mặt phẳng: Lý thuyết, cách xác định và các dạng bài tập (ảnh 1)

III. Bài tập vận dụng

Bài 1: Cho tứ diện đều ABCD. Góc giữa (ABC) và (ABD) bằng α. Chọn khẳng định đúng trong các khẳng định sau?

Cách tính góc giữa hai mặt phẳng trong không gian cực hay - Toán lớp 11

Hướng dẫn giải

Đặt AB = a. Gọi I là trung điểm của AB.

Tam giác ABC đều cạnh a nên CI ⊥ AB và CI = a√3/2

Tam giác ABD đều nên DI ⊥ AB và DI = a√3/2

Do đó, ((ABC), (ABD)) = (CI, DI) = ∠CID = α

Tam giác CID có

Cách tính góc giữa hai mặt phẳng trong không gian cực hay - Toán lớp 11

Chọn A

Bài 2: Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh đều bằng a. Tính của góc giữa một mặt bên và một mặt đáy.

Cách tính góc giữa hai mặt phẳng trong không gian cực hay - Toán lớp 11

Hướng dẫn giải

Cách tính góc giữa hai mặt phẳng trong không gian cực hay - Toán lớp 11

Chọn C.

Gọi H là giao điểm của AC và BD.

+ Do S.ABCD là hình chóp tứ giác đều nên SH ⊥( ABCD)

Ta có: (SCD) ∩ (ABCD) = CD. Gọi M là trung điểm CD.

+ Tam giác SCD là cân tại S ; tam giác CHD cân tại H (Tính chất đường chéo hình vuông)

SM ⊥ CD và HM ⊥ CD

⇒ ((SCD), (ABCD)) = (SM, HM) = ∠SMH = α

Từ giả thiết suy ra tam giác SCD là tam giác đều cạnh a có SM là đường trung tuyến ⇒ SM = a√3/2

Cách tính góc giữa hai mặt phẳng trong không gian cực hay - Toán lớp 11

Bài 3: Cho hình chóp S.ABCD có đáy là hình thoi tâm O cạnh a và có góc ∠BAD = 60°. Đường thẳng SO vuông góc với mặt phẳng đáy (ABCD) và SO = 3a/4. Gọi E là trung điểm BC và F là trung điểm BE. Góc giữa hai mặt phẳng (SOF)và (SBC) là

A. 90° B. 60° C. 30° D. 45°

Hướng dẫn giải

Cách tính góc giữa hai mặt phẳng trong không gian cực hay - Toán lớp 11

Tam giác BCD có BC = BD và ∠BCD = 60° nên tam giác BCD đều

Lại có E là trung điểm BC ⇒ DE ⊥ BC

Mặt khác, tam giác BDE có OF là đường trung bình

⇒ OF // DE ⇒ BC ⊥ OF (1).

+ Do SO ⊥ (ABCD) ⇒ BC ⊥ SO (2).

+ Từ (1) và (2), suy ra BC ⊥ (SOF) ⇒ (SBC) ⊥ (sOF)

Vậy, góc giữa ( SOF) và( SBC) bằng 90°

Chọn A

Bài 4: Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a và có SA = SB = SC = a. Góc giữa hai mặt phẳng (SBD) và (ABCD) bằng

A. 30° B. 90° C. 60° D. 45°

Hướng dẫn giải

Cách tính góc giữa hai mặt phẳng trong không gian cực hay - Toán lớp 11

Gọi H là chân đường vuông góc của S xuống mặt phẳng đáy (ABCD) (SH ⊥(ABCD))

+ Do SA = SB = SC = a nên hình chiếu vuông góc H của S lên mp(ABCD) là tâm đường tròn ngoại tiếp tam giác ABC.

+ Mà tam giác ABC cân tại B ( Vì BA = BC = a) ⇒ tâm H phải nằm trên BD ⇒ SH ⊂ (SBD)

Cách tính góc giữa hai mặt phẳng trong không gian cực hay - Toán lớp 11

Bài 5: Cho hình chóp tứ giác đều S.ABCD, có đáy ABCD là hình vuông tâm O. Các cạnh bên và các cạnh đáy đều bằng a. Gọi M là trung điểm SC. Góc giữa hai mặt phẳng (MBD) và (ABCD) bằng:

A. 90° B. 60° C. 45° D. 30°

Hướng dẫn giải

Cách tính góc giữa hai mặt phẳng trong không gian cực hay - Toán lớp 11

Gọi M’ là trung điểm OC.

Do S.ABCD là hình chóp tứ giác đều nên SO ⊥ (ABCD)

⇒ SO ⊥ OC.

Xét tam giác SOC vuông tại O đường trung tuyến OM có: OM = SC/2 = a/2

Cách tính góc giữa hai mặt phẳng trong không gian cực hay - Toán lớp 11

Chọn đáp án C

Bài 6: Cho tứ diện ABCD có AC = AD và BC = BD. Gọi I là trung điểm của CD. Khẳng định nào sau đây sai?

A. Góc giữa hai mặt phẳng (ABC) và (ABD) là ∠CBD

B. Góc giữa hai mặt phẳng (ACD) và (BCD) là ∠AIB

C. (BCD) ⊥ (AIB)

D. (ACD) ⊥ (AIB)

Hướng dẫn giải

Cách tính góc giữa hai mặt phẳng trong không gian cực hay - Toán lớp 11

+ Tam giác BCD cân tại B có I trung điểm đáy CD

⇒ CD ⊥ BI (1)

+ Tam giác CAD cân tại A cóI trung điểm đáy CD

⇒ CD ⊥ AI (2)

Từ (1) và (2) ⇒ CD ⊥ (ABI).

⇒ (BCD) ⊥ (ABI) Và (ACD) ⊥ (ABI);

Góc giữa hai mặt phẳng (ACD) và (BCD) là ∠AIB .

Vậy A: sai

Chọn A

1 5,551 23/09/2024


Xem thêm các chương trình khác: