Tìm m để bất phương trình có nghiệm

Với tài liệu về Tìm m để bất phương trình có nghiệm bao gồm: lý thuyết và bài tập cũng như những định nghĩa, tính chất, các dạng bài sẽ giúp bạn nắm vững kiến thức và học tốt môn Toán hơn.

1 116 25/07/2024


Tìm m để bất phương trình có nghiệm

I. Lý thuyết

  • f(x) > 0 vô nghiệm ⇔ f(x) ≤ 0 nghiệm đúng với ∀x ∈ \mathbb{R} . Nghĩa là \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  {a < 0} \\ 
  {\Delta  \leqslant 0} 
\end{array}} \right.
  • f(x) < 0 vô nghiệm ⇔ f(x) ≥ 0 nghiệm đúng với ∀x ∈ \mathbb{R}. Nghĩa là \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  {a > 0} \\ 
  {\Delta  \leqslant 0} 
\end{array}} \right.
  • f(x) ≥ 0 vô nghiệm ⇔ f(x) < 0 nghiệm đúng với ∀x ∈ \mathbb{R}. Nghĩa là \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  {a < 0} \\ 
  {\Delta  < 0} 
\end{array}} \right.
  • f(x) ≤ 0 vô nghiệm ⇔ f(x) > 0 nghiệm đúng với ∀x ∈ \mathbb{R}. Nghĩa là \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  {a > 0} \\ 
  {\Delta  < 0} 
\end{array}} \right.

II. Ví dụ minh họa

Ví dụ 1: Tìm m để bất phương trình x2 - 2(m + 1) + m2 + 2m ≤ 0 có nghiệm với mọi x ∈ [0; 1]

Hướng dẫn giải:

Đặt x2 - 2(m + 1) + m2 + 2m ≤ 0

Vậy bất phương trình có nghiệm đúng với ∀x ∈ [0; 1]

Phương trình f(x) = 0 có hai nghiệm thỏa mãn {{x}_{1}}\le 1<2\le {{x}_{2}}

\Leftrightarrow \left\{ \begin{matrix}

kf(0)\le 0 \\

kf(1)\le 0 \\

\end{matrix} \right.\Leftrightarrow \left\{ \begin{matrix}

{{m}^{2}}+2m\le 0 \\

{{m}^{2}}-1\le 0 \\

\end{matrix}\Leftrightarrow -1\le m\le 0 \right.

Vậy với -1 ≤ m ≤ 0 thỏa mãn điều kiện đề bài cho.

Ví dụ 2: Tìm m để bất phương trình sau (m + 2)x2 - 2mx + m2 + 2m ≤ 0 có nghiệm.

Hướng dẫn giải

Xét 3 trường hợp:

Trường hợp 1: Với m + 2 = 0 ⇒ m = -2 ta được:

(1) ⇔ 4x + 4 <0 ⇔ x < -1

Bất phương trình vô nghiệm

Trường hợp 2: Với m < -2

Bất phương trình đã cho cũng có nghiệm

Trường hợp 3: m + 2 > 0 ⇒ m > -2. Khi đó bất phương trình đã cho có nghiệm thì vế trái phải có 2 nghiệm phân biệt :

\Leftrightarrow \Delta >0\Leftrightarrow {{m}^{2}}-2>0\Leftrightarrow \left| m \right|>\sqrt{2}\Leftrightarrow \left\{\begin{matrix} m>\sqrt{2}  \\ -2 < m <-\sqrt{2} \end{matrix}\right.

Vậy với |m| < \sqrt{2} thì bất phương trình có nghiệm.

III. Bài tập vận dụng

Bài 1: Cho bất phương trình (m - 1)x2 + 2mx - 3 > 0. Tìm giá trị của m để bất phương trình nghiệm đúng với mọi x thuộc \mathbb{R}.

Hướng dẫn giải

Đặt (m - 1)x2 + 2mx - 3 = f(x)

TH1: m - 1 = 0 ⇒ m = 1. Thay m = 1 vào bất phương trình ta được: 2x - 3 > 0⇒ x > \frac{3}{2} (Loại)

TH2: m - 1 ≠ 0 ⇔ m ≠ 1

Để bất phương trình f(x) > 0 nghiệm đúng với mọi x \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  {a > 0} \\ 
  {\Delta  < 0} 
\end{array}} \right.

\Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  {m - 1 > 0} \\ 
  {4{m^2} + 12m - 12 < 0} 
\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  {m > 1} \\ 
  {m \in \left( {\dfrac{{ - 3 - \sqrt {21} }}{2};\dfrac{{ - 3 + \sqrt {21} }}{2}} \right)} 
\end{array} \Leftrightarrow m \in \emptyset } \right.} \right.

Vậy không có giá trị nào của m để bất phương trình có nghiệm đúng với mọi x thuộc \mathbb{R}.

Bài 2: Tìm m để các bất phương trình sau đúng với mọi x thuộc \mathbb{R}.

a. (m - 3)x2 + (m + 1)x + 2 < 0

b. (m - 1)x2 + (m - 3)x + 4 > 0

Hướng dẫn giải

a. Đặt (m - 3)x2 + (m + 1)x + 2 = f(x)

TH1: m - 3 = 0 ⇔ m = 3. Thay m = 3 vào bất phương trình ta được: 2x + 2 < 0 ⇔ x < -1 (Loại)

TH2: m - 3 ≠ 0 ⇔ m ≠ 3

Để bất phương trình f(x) < 0 nghiệm đúng với mọi x \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  {a < 0} \\ 
  {\Delta  < 0} 
\end{array}} \right.

\Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  {m - 3 < 0} \\ 
  {{m^2} - 6m + 25 < 0} 
\end{array}} \right.

Ta có: m2 - 6m + 25 = (m - 3)2 + 16 ≥ 16,∀m

Vậy không có giá trị nào của m để bất phương trình có nghiệm đúng với mọi x thuộc \mathbb{R}

b. Đặt (m - 1)x2 + (m - 3)x + 4 = f(x)

TH1: m - 1 = 0 ⇔ m = 1. Thay m = 1 vào bất phương trình ta được: -2x + 4 > 0 ⇔ x < 2 (Loại)

TH2: m - 1 ≠ 0 ⇔ m ≠ 1

Để bất phương trình f(x) > 0 nghiệm đúng với mọi x \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  {a > 0} \\ 
  {\Delta  < 0} 
\end{array}} \right.

\Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  {m - 1 > 0} \\ 
  {{m^2} - 6m + 25 < 0} 
\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  {m > 1} \\ 
  {m \in \left( {11 - 4\sqrt 6 ;11 + 4\sqrt 6 } \right)} 
\end{array}} \right.} \right. \Leftrightarrow m \in \left( {11 - 4\sqrt 6 ;11 + 4\sqrt 6 } \right)

Vậy m \in \left( {11 - 4\sqrt 6 ;11 + 4\sqrt 6 } \right) thì bất phương trình có nghiệm đúng với mọi x thuộc \mathbb{R}.

Bài 3: Tìm m để bất phương trình x2 - 2(m + 1) + m2 + 2m ≤ 0 có nghiệm với mọi x ∈ [0; 1]

Hướng dẫn giải:

Đặt x2 - 2(m + 1) + m2 + 2m ≤ 0

Vậy bất phương trình có nghiệm đúng với ∀x ∈ [0; 1]

Phương trình f(x) = 0 có hai nghiệm thỏa mãn {{x}_{1}}\le 1<2\le {{x}_{2}}

\Leftrightarrow \left\{ \begin{matrix}

kf(0)\le 0 \\

kf(1)\le 0 \\

\end{matrix} \right.\Leftrightarrow \left\{ \begin{matrix}

{{m}^{2}}+2m\le 0 \\

{{m}^{2}}-1\le 0 \\

\end{matrix}\Leftrightarrow -1\le m\le 0 \right.

Vậy với -1 ≤ m ≤ 0 thỏa mãn điều kiện đề bài cho.

Bài 4: Tìm m để bất phương trình sau (m + 2)x2 - 2mx + m2 + 2m ≤ 0 có nghiệm.

Hướng dẫn giải

Xét 3 trường hợp:

Trường hợp 1: Với m + 2 = 0 ⇒ m = -2 ta được:

(1) ⇔ 4x + 4 <0 ⇔ x < -1

Bất phương trình vô nghiệm

Trường hợp 2: Với m < -2

Bất phương trình đã cho cũng có nghiệm

Trường hợp 3: m + 2 > 0 ⇒ m > -2. Khi đó bất phương trình đã cho có nghiệm thì vế trái phải có 2 nghiệm phân biệt :

\Leftrightarrow \Delta >0\Leftrightarrow {{m}^{2}}-2>0\Leftrightarrow \left| m \right|>\sqrt{2}\Leftrightarrow \left\{\begin{matrix} m>\sqrt{2}  \\ -2 < m <-\sqrt{2} \end{matrix}\right.

Vậy với |m| < \sqrt{2} thì bất phương trình có nghiệm.

Bài 5: Tìm m để bất phương trình sau có nghiệm: m2x + 3 < mx + 4

Hướng dẫn giải:

Bất phương trình tương đương với: m2x - mx < 4 ⇔ (m2 - m)x < 1; m2 - m = 0 ⇔m = {0;1} thì bất phương trình trở thành 0 < 1 đúng với mọi x .

Nên bất phương trình có vô số nghiệm.

Với m2 - m ≠ 0 ⇔ m ≠ {0; 1} thì bất phương trình trở thành x<\frac{1}{m^{2}-m} luôn có nghiệm là x<\frac{1}{m^{2}-m}

Vậy bất phương trình có nghiệm với mọi giá trị thực của m.

Bài 6: Tìm tham số m để bất phương trình: f(x) = (m2 + 1)x2 + (2m - 1)x - 5 < 0

Nghiệm đúng với mọi x thuộc khoảng ( -1; 1)

Hướng dẫn giải:

Ta có:\left\{ \begin{matrix}f(-1)\le 0 \\f(1)\le 0 \\\end{matrix} \right.\Leftrightarrow \left\{ \begin{matrix}{{m}^{2}}-2m-3\le 0 \\{{m}^{2}}+2m-5\le 0 \\\end{matrix}\Leftrightarrow \left\{ \begin{matrix}-1\le m\le 3 \\-\sqrt{6}\le m\le \sqrt{6}-1 \\\end{matrix} \right. \right.

⇔ -1 ≤ m ≤ \sqrt 6 - 1

Vậy để bất phương trình có nghiệm đúng với mọi x thuộc khoảng ( -1, 1) thì m ∈ (-1; \sqrt{6} - 1)

Bài 7: Tìm m để bất phương trình có nghiệm đúng với mọi x: (m + 4)x2 - 2mx + 2m - 6 < 0

Hướng dẫn giải:

+ Với m = - 4 thì bất phương trình trở thành: 8x - 14 < 0, ∀x (loại)

+ Với m\ne -4 \Rightarrow f(x) < 0,\forall x
\Leftrightarrow \left\{ \begin{matrix}

a<0 \\ 
\Delta '< 0 \\

\end{matrix}\right.\Leftrightarrow \left\{ \begin{matrix}

m<-4 \\

{{m}^{2}}-(m+4)(2m-6)<0 \\

\end{matrix}\right.

\Rightarrow\left\{ \begin{matrix}

m<-4 \\

m\in (-\infty ,-4)\cup (6,+\infty ) \\
\end{matrix}\left\{ \begin{matrix}

m<-4 \\

m\in (-\infty ,-4)\cup (6,+\infty ) \\

\end{matrix}\right. \right.\Leftrightarrow m<-4

Vậy bất phương trình có nghiệm đúng với mọi x khi m < -4.

Bài 8: Cho bất phương trình: x2 + 4x + 3 + m ≤ 0

a. Tìm m để bất phương trình vô nghiệm.

b. Tìm m để bất phương trình có đúng một nghiệm.

c. Tìm m để bất phương trình có nghiệm là một đoạn có độ dài bằng 2.

Bài 9: Tìm m để bất phương trình: x4 + 2mx2 + m ≥ 0 có nghiệm đúng với mọi x.

Bài 10: Tìm m để bất phương trình (m + 4){x^2} - 2mx + 2m - 6 < 0 có nghiệm đúng với mọi x

1 116 25/07/2024


Xem thêm các chương trình khác: