Lý thuyết, cách xác định và bài tập hằng đẳng thức đáng nhớ

Với tài liệu về các bài tập hằng đẳng thức đáng nhớ bao gồm: lý thuyết và bài tập cũng như những định nghĩa, tính chất, các dạng bài sẽ giúp bạn nắm vững kiến thức và học tốt môn Toán hơn.

 

1 73 05/08/2024


Bài tập hằng đẳng thức

Bài 1: Điền vào chỗ trống: A = ( 1/2x - y )2 = 1/4x2 - ... + y2

A. 2xy B. xy

C. - 2xy D. 1/2 xy

Lời giải:

Áp dụng hằng đẳng thức (a - b)2 = a2 - 2ab + b2.

Khi đó ta có A = ( 1/2x - y )2 = 1/4x2 - 2.1/2x.y + y2 = 1/4x2 - xy + y2.

Suy ra chỗ trống cần điền là xy.

Chọn đáp án B.

Bài 2: Điều vào chỗ trống: ... = ( 2x - 1 )( 4x2 + 2x + 1 ).

A. 1 - 8x3.

B. 1 - 4x3.

C. x3 - 8.

D. 8x3 - 1.

Lời giải:

Áp dụng hằng đẳng thức a3 - b3 = ( a - b )( a2 + ab + b2 )

Khi đó ta có ( 2x - 1 )( 4x2 + 2x + 1 ) = ( 2x - 1 )[ ( 2x )2 + 2x.1 + 1 ] = ( 2x )3 - 1 = 8x3 - 1.

Suy ra chỗ trống cần điền là 8x3 - 1.

Chọn đáp án D.

Bài 3: Tính giá trị cuả biểu thức A = 8x3 + 12x2y + 6xy2 + y3 tại x = 2 và y = -1.

A. 1 B. 8

C. 27 D. -1

Lời giải:

Áp dụng hằng đẳng thức ( a + b )3 = a3 + 3a2b + 3ab2 + b3.

Khi đó ta có:

A = 8x3 + 12x2y + 6xy2 + y3 = ( 2x )3 + 3.( 2x )2.y + 3.( 2x ).y2 + y3 = ( 2x + y )3

Với x = 2 và y = -1 ta có A = ( 2.2 - 1 )3 = 33 = 27.

Chọn đáp án C.

Bài 4: Tính giá trị của biểu thức A = 352 - 700 + 102.

A. 252. B. 152.

C. 452. D. 202.

Lời giải:

Ta có A = 352 - 700 + 102 = 352 - 2.35.10 + 102

Áp dụng hằng đẳng thức ( a - b )2 = a2 - 2ab + b2.

Khi đó A = ( 35 - 10 )2 = 252.

Chọn đáp án A.

Bài 5: Giá trị của x thỏa mãn 2x2 - 4x + 2 = 0 là ?

A. x = 1. B. x = - 1.

C. x = 2. D. x = - 2.

Lời giải:

Ta có 2x2 - 4x + 2 = 0 ⇔ 2( x2 - 2x + 1 ) = 0 ( 1 )

Áp dụng hằng đẳng thức ( a - b )2 = a2 - 2ab + b2

Khi đó ta có ( 1 ) ⇔ 2( x - 1 )2 = 0 ⇔ x - 1 = 0 ⇔ x = 1.

Chọn đáp án A.

Bài 6: Bài tập Những hằng đẳng thức đáng nhớ | Lý thuyết và Bài tập Toán 8 có đáp án

Bài tập Những hằng đẳng thức đáng nhớ | Lý thuyết và Bài tập Toán 8 có đáp án

Lời giải:

Áp dụng hằng đẳng thức đáng nhớ: Bài tập Những hằng đẳng thức đáng nhớ | Lý thuyết và Bài tập Toán 8 có đáp án

Ta được:

Bài tập Những hằng đẳng thức đáng nhớ | Lý thuyết và Bài tập Toán 8 có đáp án

Chọn đáp án A

Bài 7: Điền vào chỗ chấm:

Bài tập Những hằng đẳng thức đáng nhớ | Lý thuyết và Bài tập Toán 8 có đáp án

Bài tập Những hằng đẳng thức đáng nhớ | Lý thuyết và Bài tập Toán 8 có đáp án

Lời giải:

Bài tập Những hằng đẳng thức đáng nhớ | Lý thuyết và Bài tập Toán 8 có đáp án

Chọn đáp án C

Bài 8: Rút gọn biểu thức: A = (x – 2y).(x2 + 2xy + y2) - (x + 2y). (x2 – 2xy + y2)

A. 2x3 B. -16y3

C. 16y3 D. –2x3

Lời giải:

Áp dụng hằng đẳng thức:

a3 – b3 = (a – b).(a2 + ab + b2) và a3 + b3 = (a + b).(a2 – ab + b2) ta được:

A = (x – 2y). (x2 + 2xy + y2) - (x + 2y). (x2 – 2xy + y2)

A = x3 – (2y)3 - [x3 + (2y)3]

A = x3 – 8y3 – x3 – 8y3 = -16y3

Chọn đáp án B

Bài 9: Tìm x biết x2 – 16 + x(x – 4) = 0

A. x = 2 hoặc x = - 4.

B. x = 2 hoặc x = 4.

C. x = -2 hoặc x = - 4.

D. x = -2 hoặc x = 4.

Lời giải:

Ta có: x2 – 16 + x(x – 4) = 0

⇔ (x + 4). (x - 4) + x.(x – 4) = 0

⇔ (x + 4 + x).(x - 4) = 0

⇔ (2x + 4). (x - 4) = 0

⇔ 2x + 4 = 0 hoặc x – 4 = 0

* Nếu 2x + 4 = 0 thì x = -2

* Nếu x – 4 =0 thì x = 4

Vậy x = -2 hoặc x = 4.

Chọn đáp án D

Bài 10: Rút gọn biểu thức A = (x + 2y ).(x - 2y) - (x – 2y)2

A. 2x2 + 4xy B. – 8y2 + 4xy

C. - 8y2 D. – 6y2 + 2xy

Lời giải:

Ta có: A = (x + 2y ). (x - 2y) - (x – 2y)2

A = x2 – (2y)2 – [x2 – 2.x.2y +(2y)2 ]

A = x2 – 4y2 – x2 + 4xy - 4y22

A = -8y2 + 4xy

Chọn đáp án B

Bài 11: Chọn câu đúng

A. (c + d)2 – (a + b)2 = (c + d + a + b)(c + d – a + b)

B. (c – d)2 – (a + b)2 = (c – d + a + b)(c – d – a + b)

C. (a + b + c – d)(a + b – c + d) = (a + b)2 – (c – d)2

D. (c – d)2 – (a – b)2 = (c – d + a – b)(c – d – a – b)

Lời giải

Ta có

(c + d)2 – (a + b)2 = (c + d + a + b)(c + d – (a + b)) = (c + d + a + b)(c + d – a – b) nên A sai

(c – d)2 – (a + b)2 = (c – d + a + b)[c – d – (a + b)] = (c – d + a + b)(c – d – a – b) nên B sai

(c – d)2 – (a – b)2 = (c – d + a – b)(c – d – (a – b)) = (c – d + a – b)(c – d – a + b) nên D sai

(a + b + c – d)(a + b – c + d) = [(a + b) + (c – d)][(a + b) – (c – d)] = (a + b)2 – (c – d)2 nên C đúng

Đáp án cần chọn là: C

Bài 12: Chọn câu đúng

A. 4 – (a + b)2 = (2 + a + b)(2 – a + b)

B. 4 – (a + b)2 = (4 + a + b)(4 – a – b)

C. 4 – (a + b)2 = (2 + a – b)(2 – a + b)

D. 4 – (a + b)2 = (2 + a + b)(2 – a – b)

Lời giải

Ta có 4 – (a + b)2 = 22 – (a + b)2 = (2 + a + b)[2 – (a + b)]

= (2 + a + b)(2 – a – b)

Đáp án cần chọn là: D

Bài 13: Rút gọn biểu thức A = (3x – 1)2 – 9x(x + 1) ta được

A. -15x + 1

B. 1

C. 15x + 1

D. – 1

Lời giải

Ta có A = (3x – 1)2 – 9x(x + 1)

= (3x)2 – 2.3x.1 + 1 – (9x.x + 9x)

= 9x2 – 6x + 1 – 9x2 – 9x

= -15x + 1

Đáp án cần chọn là: A

Bài 14: Rút gọn biểu thức A = 5(x + 4)2 + 4(x – 5)2 – 9(4 + x)(x – 4), ta được2 + 4(x – 5)2 – 9(

A. 342

B. 243

C. 324

D. -324

Lời giải

Ta có A = 5(x + 4)2 + 4(x – 5)2 – 9(4 + x)(x – 4)

= 5(x2 + 2.x.4 + 16) + 4(x2 – 2.x.5 + 52) – 9(x2 – 42)

= 5(x2 + 8x + 16) + 4(x2 – 10x + 25) – 9(x2 – 42)

= 5x2 + 40x + 80 + 4x2 – 40x + 100 – 9x2 + 144

=

(5x2 + 4x2 – 9x2) + (40x – 40x) + (80 +100 + 144)

= 324

Đáp án cần chọn là: C

Bài 15: Rút gọn biểu thức B = (2a – 3)(a + 1) – (a – 4)2 – a(a + 7) ta được

A. 0

B. 1

C. 19

D. – 19

Lời giải

Ta có B = (2a – 3)(a + 1) – (a – 4)2 – a(a + 7)

= 2a2 + 2a – 3a – 3 – (a2 – 8a + 16) – (a2 + 7a)

= 2a2 + 2a – 3a – 3 – a2 + 8a – 16 – a2 – 7a

= - 19

Đáp án cần chọn là: D

Bài 16: Cho B = (x2 + 3)2 – x2(x2 + 3) – 3(x + 1)(x – 1). Chọn câu đúng.

A. B < 12

B. B > 13

C. 12 < B< 14

D. 11 < B < 13

Lời giải

Ta có B = (x2 + 3)2 – x2(x2 + 3) – 3(x + 1)(x – 1).

= (x2)2 +2.x2.4 + 32 – (x2.x2 + x2.3) – 3(x2 – 1)

= x4 + 6x2 + 9 – x4 – 3x2 – 3x2 + 3 = 12

Đáp án cần chọn là: D

Bài 17: Cho Trắc nghiệm Những hằng đẳng thức đáng nhớ có đáp án. Tìm mối quan hệ giữa C và D.

A. D = 14C + 1

B. D = 14C

C. D = 14C – 1

D. D = 14C – 2

Lời giải

Ta có:

Trắc nghiệm Những hằng đẳng thức đáng nhớ có đáp án

Vậy D = 29; C = 2 suy ra D = 14C + 1 (do 29 = 14.2 + 1)

Đáp án cần chọn là: A

Bài 18: Cho M = 4(x + 1)2 + (2x + 1)2 – 8(x – 1)(x + 1) – 12x và N = 2(x – 1)2 – 4(3 + x)2 + 2x(x + 14).

Tìm mối quan hệ giữa M và N

A. 2N – M = 60

B. 2M – N = 60

C. M> 0, N < 0

D. M > 0, N > 0

Lời giải

Ta có

M = 4(x + 1)2 + (2x + 1)2 – 8(x – 1)(x + 1) – 12

= 4(x2 + 2x + 1) + (4x2 + 4x + 1) – 8(x2 – 1) – 12x

= 4x2 + 8x + 4 + 4x2 + 4x + 1 – 8x2 +8 – 12x

= (4x2 + 4x2 – 8x2) + (8x + 4x – 12x) + 4 + 1 +8

= 13

N = 2(x – 1)2 – 4(3 + x)2 + 2x(x + 14)

= 2(x2 – 2x + 1) – 4(9 + 6x + x2) + 2x2 + 28x

= 2x2 – 4x + 2 – 36 – 24x – 4x2 + 2x2 + 28x

= (2x2 +2x2 – 4x2) + (-4x – 24x + 28x) + 2 – 36

= -34

Suy ra M = 13, N = -34 ⇔ 2M – N = 60

Đáp án cần chọn là: B

Bài 19: Có bao nhiêu giá trị x thỏa mãn (2x – 1)2 – (5x – 5)2 = 0

A. 0

B. 1

C. 2

D. 3

Lời giải

Trắc nghiệm Những hằng đẳng thức đáng nhớ có đáp án

Vậy có hai giá trị của x thỏa mãn yêu cầu

Đáp án cần chọn là: C

Bài 20: Có bao nhiêu giá trị x thỏa mãn (2x + 1)2 – 4(x + 3)2 = 0

A. 0

B. 1

C. 2

D. 3

Lời giải

Ta có:

Trắc nghiệm Những hằng đẳng thức đáng nhớ có đáp án

Vậy có một giá trị của x thỏa mãn yêu cầu.

Đáp án cần chọn là: B

Xem thêm các phần lý thuyết, các dạng bài tập Toán lớp 8 khác:

1 73 05/08/2024


Xem thêm các chương trình khác: