Lý thuyết, cách xác định và bài tập các cách xác định góc giữa hai vecto
Với tài liệu về các cách xác định góc giữa hai vecto bao gồm: lý thuyết và bài tập cũng như những định nghĩa, tính chất, các dạng bài sẽ giúp bạn nắm vững kiến thức và học tốt môn Toán hơn.
Góc giữa hai vecto
A. Phương pháp giải
Phương pháp 1: Sử dụng định nghĩa góc giữa hai vectơ
Định nghĩa góc giữa hai vectơ: Cho hai vectơ đều khác vectơ-không. Từ một điểm O bất kỳ, ta vẽ các vectơ . Khi đó số đo của góc AOB, được gọi là số đo góc giữa hai vectơ , hoặc đơn giản là góc giữa hai vectơ .
Phương pháp 2: (Áp dụng trong hệ tọa độ) Tính cos góc giữa hai vectơ, từ đó suy ra góc giữa 2 vectơ.
Sử dụng công thức sau:
Cho hai vectơ . Khi đó
Chú ý: Góc giữa hai vectơ thuộc [0°;180°]
B. Ví dụ minh họa
Ví dụ 1: Cho tam giác ABC vuông cân tại A. Tính góc giữa hai vectơ:
Hướng dẫn giải:
- Nhớ lại khái niệm hai vectơ bằng nhau ở chương 1: Hai vectơ bằng nhau khi chúng cùng hướng và cùng độ dài.
- Trên tia đối của tia CB lấy D sao cho CB = CD.
Ví dụ 2: Cho các vectơ Tính góc giữa hai vectơ .
Hướng dẫn giải:
Vậy góc giữa hai vectơ là góc α ∈ [0°;180°] thỏa mãn .
Ví dụ 3: Trong mặt phẳng tọa độ Oxy, cho hai vectơ . Tính góc giữa hai vectơ .
A. 45°
B. 60°
C. 90°
D. 30°
Hướng dẫn giải:
Đáp án A
Ví dụ 4: Cho hai vectơ có độ dài bằng 1 và thỏa mãn điều kiện . Tính góc giữa hai vectơ .
A. 60°
B. 30°
C. 120°
D. 150°
Hướng dẫn giải:
Vì (bình phương vô hướng bằng bình phương độ dài)
Đáp án C
Ví dụ 5: Cho các vectơ thỏa mãn . Góc giữa vectơ và vectơ là
A. 30°
B. 60°
C. 90°
D. 120°
Hướng dẫn giải:
Đáp án A
C. Bài tập tự luyện
Bài 1. Tính góc giữa vecto a và vectơ c, biết vectơ và cho các vectơ a và b thoả mãn |a| = 4, |b| = 2.
Hướng dẫn giải
Ta có: c = a – b
Nên c2 = (a – b)2 = a2 – 2ab + b2 = |a|2 – 2|a| . |b| . cos(a,b) + |b|2
Suy ra c2 = 42 – 2.4.1.cos60o + 22 = 3 hay |c| = .
Ta lại có: a . c = a . (a – b) = a2 – a . b hay a . c =3
Do đó a . c = |a| . |c| . cos (a, c)
Hay 3 = 2.. cos(a, c)
Do đó, cos(a, c) =
Vậy góc giữa 2 vectơ bằng 30o.
Bài 2. Tứ diện OABC có các cạnh OA, OB, OC đôi một vuông góc và đều có độ dài là 1. Gọi M là trung điểm của canh AB. Tính góc giữa hai vectơ .
Hướng dẫn giải
Lấy N là trung điểm của AC suy ra MN // BC.
Ta có:
Xét tam giác OMN có OM = ON = ; MN = BC =
Suy ra hoặc .
Do đó .
Bài 3. Tính góc giữa 2 vectơ a và b, biết rằng 2 vectơ a và b có độ bài bằng 1 và thoả mãn điều kiện |3a + 2b| = .
Hướng dẫn giải
Ta có: hay nên 9a2 + 12b + 4b = 7
Vì a2 = |a|2 =1; b2 = |b|2 =1.
Nê 4 . 1 + 12ab + 9 . 1 = 7 nên 12ab = 7 – 4 – 9 = –6 hay ab = .
Do đó: .
Vậy góc giữa 2 vectơ a và b là 120 độ.
Bài 4. Cho hình thoi ABCD có . Tính góc giữa hai vectơ và .
Hướng dẫn giải
Ta có AB // DC và AB = DC (vì ABCD là hình thoi)
Suy ra nên .
Mà .
Do đó .
Bài 5. Cho tứ diện ABCD có AC = BD = 2a. Gọi M, N lần lượt là trung điểm BC, AD. Biết rằng MN = . Tính góc giữa AC và BD.
Hướng dẫn giải
Gọi I là trung điểm của AB, ta có IM = IN = a
Áp dụng định lý của Cosin cho tam giác IMN ta có:
=
=> .
Vậy góc giữa AC và BD bằng 60 độ.
Bài 6. Cho các vectơ . Tính góc giữa hai vectơ .
Bài 7. Trong mặt phẳng tọa độ Oxy, cho hai vectơ . Tính góc giữa hai vectơ .
Bài 8. cho hai vectơ có độ dài bằng 1 và thỏa mãn điều kiện . Tính góc giữa hai vectơ .
Bài 9. Cho hình chóp S.ABCD có đáy là hình vuông cạnh , SA vuông góc với mặt phẳng đáy tại A, SA = . Tính góc giữa đường thẳng SC và mặt phẳng ABCD.
Bài 10. Cho hình chóp S.ABCD có đấy ABCD là hình bình hành với BC = 2a, SA vuông góc với mặt phẳng đáy, Góc giữa hai đường thẳng SD và BC nằm trong khoảng nào?
Xem thêm các dạng bài tập Toán lớp 10 chọn lọc, có đáp án hay khác khác:
Xem thêm các chương trình khác:
- Các dạng bài tập Tiếng Anh thông dụng nhất
- 3000 câu hỏi ôn tập môn Tiếng Anh có đáp án
- Toàn bộ kiến thức về cụm động từ | Định nghĩa và cách dùng
- 500 đoạn văn Tiếng Anh thông dụng nhất và cách làm
- 1000 câu hỏi ôn tập môn Công nghệ có đáp án
- 1000 câu hỏi ôn tập Giáo dục công dân
- 3000 câu hỏi ôn tập môn Vật lí có đáp án
- Tổng hợp Dạng bài - Công thức môn Vật lí
- Phương trình hóa học | Tổng hợp PTHH của các chất hữu cơ, vô cơ chính xác nhất
- Đồng phân & Công thức cấu tạo của các chất hữu cơ
- Nhận biết các chất Hóa học
- Cấu hình electron
- So sánh bán kính nguyên tử và bán kính ion
- 1000 câu hỏi ôn tập môn Hóa có đáp án
- Wiki các chất hóa học | Định nghĩa, tính chất, nhận biết, điều chế, ứng dụng
- Cách đọc danh pháp hóa học (chương trình mới) đầy đủ nhất
- Công thức Lewis của một số chất thường gặp (chương trình mới)
- Công thức electron của một số chất thường gặp (chương trình mới)
- Công thức cấu tạo của một số chất thường gặp (chương trình mới)
- Công thức hợp chất khí với hidro của các nguyên tố (phổ biến) | Cách viết công thức hợp chất khí với hidro
- Công thức hidroxit cao nhất của các nguyên tố (phổ biến) | Cách viết công thức hidroxit cao nhất
- Công thức oxit cao nhất của các nguyên tố (phổ biến) | Cách viết công thức oxit cao nhất
- 2000 câu hỏi ôn tập môn Tin học có đáp án
- 3000 câu hỏi ôn tập môn Lịch sử có đáp án
- 3000 câu hỏi ôn tập môn Địa lí có đáp án
- 2000 câu hỏi ôn tập môn Sinh học có đáp án
- Tổng hợp Dạng bài - Công thức môn Sinh học
- Tổng hợp về các tác giả văn học
- 3000 câu hỏi ôn tập môn Ngữ văn có đáp án
- Tổng hợp kiến thức Ngữ Văn
- Trò chơi Powerpoint | Game Powerpoint
- Tổng hợp bài thu hoạch BDTX Giáo viên mầm non (2024) theo Thông tư 12
- Tổng hợp bài thu hoạch BDTX Giáo viên tiểu học (2024)
- Tổng hợp bài thu hoạch BDTX Giáo viên THCS (2024)
- Tổng hợp bài thu hoạch BDTX Giáo viên THPT (2024)