Lý thuyết, cách xác định và bài tập các dấu hiệu nhận biết hình vuông

Với tài liệu về các dấu hiệu nhận biết hình vuông bao gồm: lý thuyết và bài tập cũng như những định nghĩa, tính chất, các dạng bài sẽ giúp bạn nắm vững kiến thức và học tốt môn Toán hơn.

   

1 159 05/08/2024


Dấu hiệu nhận biết hình vuông

I. Kiến thức cần nhớ

1. Định nghĩa:

Hình vuông là tứ giác có bốn góc vuông và bốn cạnh bằng nhau.

Các dạng toán về hình vuông và cách giải

Tứ giác ABCD là hình vuông Các dạng toán về hình vuông và cách giải

Nhận xét:

a) Hình vuông là một hình chữ nhật có 4 cạnh bằng nhau.

b) Hình vuông là hình thoi có 4 góc bằng nhau.

Như vậy hình vuông vừa là hình chữ nhật, vừa là hình thoi.

2. Tính chất

Hình vuông có tất cả các tính chất của hình chữ nhật và hình thoi.

3. Dấu hiệu nhận biết

a) Hình chữ nhật có hai cạnh kề bằng nhau là hình vuông.

b) Hình chữ nhật có hai đường chéo vuông góc với nhau là hình vuông.

c) Hình chữ nhật có một đường chéo là đường phân giác của một góc là hình vuông.

d) Hình thoi có một góc vuông là hình vuông.

e) Hình thoi có hai đường chéo bằng nhau là hình vuông.

II. Các dạng toán và phương pháp giải

Dạng 1: Chứng minh tứ giác là hình vuông

Phương pháp giải: Vận dụng các dấu hiệu nhận biết để chứng minh một tứ giác là hình vuông.

Ví dụ: Cho hình vuông ABCD. Trên các cạnh AB, BC, CD, DA lần lượt lấy các điểm E, F, G, H sao cho AE = BF = CG = DH. Chứng minh tứ giác EFGH là hình vuông.

Lời giải:

Các dạng toán về hình vuông và cách giải

Vì ABCD là hình vuông nên AB = BC = CD = DA và Các dạng toán về hình vuông và cách giải

Ta có:

Các dạng toán về hình vuông và cách giải mà AB = BC = CD = DA và AE = BF = CG = DH

Nên EB = CF = DG = AH

Xét tam giác AHE và tam giác BEF có

Các dạng toán về hình vuông và cách giải

AH = BE (chứng minh trên)

AE = BF (giả thuyết)

Do đó: ΔAHE = ΔBEF (c – g – c)

=> HE = EF (hai cạnh tương ứng) (1); Các dạng toán về hình vuông và cách giải (hai góc tương ứng)

Xét tam giác CFG và tam giác DGH có

Các dạng toán về hình vuông và cách giải

CF = DG (chứng minh trên)

CG = DH (giả thiết)

Do đó: ΔCFG = ΔDHG (c – g – c)

=> FG = GH (hai cạnh tương ứng) (2)

Xét tam giác CFG và tam giác AHE có

Các dạng toán về hình vuông và cách giải

CF = AH(chứng minh trên)

CG = AE (giả thiết)

Do đó: ΔCFG = ΔAHE (c – g – c)

=> FG = HE (hai cạnh tương ứng) (3)

Xét tứ giác EFGH ta có:

FG = HE = GH = EF (theo (1), (2), (3))

Nên tứ giác EFGH là hình thoi

Lại có:

Các dạng toán về hình vuông và cách giải (do tam giác vuông)

Các dạng toán về hình vuông và cách giải (chứng minh trên)

Nên Các dạng toán về hình vuông và cách giải

Mặt khác:

Các dạng toán về hình vuông và cách giải

Mà hình thoi EFGH có một góc vuông nên hình thoi EFGH là hình vuông.

Dạng 2: Vận dụng tính chất của hình vuông để chứng minh các tính chất hình học

Phương pháp giải:

Vận dụng định nghĩa và các tính chất về cạnh, góc và đường chéo của hình vuông.

Ví dụ: Cho hình vuông ABCD. Trên cạnh AD, DC lần lượt lấy các điểm E, F sao cho AE = DF. Chứng minh:

a) Hai tam giác ADF và BAE bằng nhau;

b) BE vuông góc với AF.

Lời giải:

Các dạng toán về hình vuông và cách giải

a) Vì ABCD là hình vuông nên AB = AD và Các dạng toán về hình vuông và cách giải

Xét hai tam giác ADF và BAE ta có:

AD = AB

Các dạng toán về hình vuông và cách giải

AE = DF ( giả thiết)

Do đó: ΔADF = ΔBAE (c – g – c)

b) Gọi giao điểm của BE và AF là G.

Ta có:

Các dạng toán về hình vuông và cách giải

Các dạng toán về hình vuông và cách giải ( hai góc tương ứng của hai tam giác bằng nhau ΔADF = ΔBAE )

Nên Các dạng toán về hình vuông và cách giải

Mà theo định lý tổng ba góc trong tam giác AEG ta có:

Các dạng toán về hình vuông và cách giải

Dạng 3: Tìm điều kiện để tứ giác là hình vuông

Phương pháp giải: Vận dụng định nghĩa và các tính chất và dấu hiệu nhận biết của hình vuông.

Ví dụ: Cho tam giác ABC vuông cân tại A, M là một điểm thuộc cạnh BC. Qua M vẽ các đường thẳng song song với AC, AB chúng cắt các cạnh AB, AC theo thứ tự tại E và F.

a) Tứ giác AFME là hình gì?

b) Xác định vị trí điểm M trên cạnh BC để tứ giác AFME là hình vuông.

Lời giải

Các dạng toán về hình vuông và cách giải

a) Ta có tam giác ABC vuông tại A nên AB ⊥ AC

Vì MF // AB nên MF ⊥ AC => Các dạng toán về hình vuông và cách giải

Vì ME // AC nên ME ⊥ AB => Các dạng toán về hình vuông và cách giải

Xét tứ giác AFME có:

Các dạng toán về hình vuông và cách giải

Do đó tứ giác AFME là hình chữ nhật.

b) Để tứ giác AFME là hình vuông thì MF = ME (hình chữ nhật có hai cạnh kề bằng nhau).

Ta có: Các dạng toán về hình vuông và cách giải (do tam giác ABC cân tại A)

Các dạng toán về hình vuông và cách giải (tam giác MEB vuông tại E); Các dạng toán về hình vuông và cách giải (tam giác FMC vuông tại F)

Suy ra Các dạng toán về hình vuông và cách giải

Xét tam giác MFC và tam giác MEB có

Các dạng toán về hình vuông và cách giải

MF = ME (giả thuyết hình vuông)

Các dạng toán về hình vuông và cách giải

Do đó: ΔMFC = ΔMEB (cạnh góc vuông và góc nhọn kề nó)

=> MB = MC (hai cạnh tương ứng) hay M là trung điểm của BC.

Vậy để AFME là hình vuông khi M là trung điểm của BC.

III. Bài tập tự luyên

Bài 1: Cho hình vuông ABCD. Trên tia đối của tia BA lấy điểm E, trên tia đối của tia CB lấy điểm F sao cho AE = CF.

a) Chứng minh tam giác EDF vuông cân.

b) Gọi I là trung điểm của EF. Chứng minh BI = DI.

c) Chứng minh A, C, I thẳng hàng.

Bài 2: Cho tứ giác ABCD. Gọi E, F, G, H theo thứu tự là trung điểm của AB, BC, CD, AD. Tìm điều kiện của tứ giác ABCD để tứ giác EFGH là

a) Hình chữ nhật;

b) Hình thoi;

c) Hình vuông.

Bài 3: Cho hình vuông ABCD, lấy M bất kỳ trên cạnh DC. Tia phân giác cắt CD tại I. Kẻ IH vuông góc với AM tại H, tia IH cắt BC tại K. Chứng minh:

a) ΔABK = ΔAHK ;

b) Các dạng toán về hình vuông và cách giải

Bài 4: Cho đoạn thẳng AB và điểm M thuộc đoạn thẳng đó. Vẽ về một phía của AB, các hình vuông AMCD, BMEF.

a) Chứng minh AE vuông góc với BC.

b) Gọi H là giao điểm của AE và BC. Chứng minh ba điểm D, H, F thẳng hàng.

c) Chứng minh đường thẳng DF luôn đi qua một điểm cố định khi M di chuyển trên đoạn thẳng cố định AB.

Bài 5: Cho tam giác ABC, vẽ ra phía ngoài tam giác các hình vuông ABDE và BCKH. BM là đường trung tuyến của tam giác ABC.

a) Chứng minh:Các dạng toán về hình vuông và cách giải

b) Vẽ hình bình hành DBHN. Chứng minh ΔABC = ΔNHB ;

c) Chứng minh: DH = 2BM;

d) Chứng minh BM vuông góc với DH.

Xem thêm các dạng bài tập Toán khác:

1 159 05/08/2024


Xem thêm các chương trình khác: