Lý thuyết, cách xác định và bài tập các cách chứng minh vuông góc

Lý thuyết, cách xác định và bài tập các cách chứng minh vuông góc - Tổng hợp kiến thức Toán hay, chi tiết nhất về các công thức, dạng bài, lý thuyết giúp bạn năm vững kiến thức và học tốt môn Toán.

1 192 05/08/2024


Các cách chứng minh vuông góc

A. Phương pháp giải

* Cách chứng minh đường thẳng vuông góc với mặt phẳng cực hay

Muốn chứng minh đương thẳng d ⊥ (α) ta có thể dùng môt trong hai cách sau.

Cách 1. Chứng minh d vuông góc với hai đường thẳng a; b cắt nhau trong (α) .

Cách chứng minh đường thẳng vuông góc với mặt phẳng cực hay

Cách 2. Chứng minh d vuông góc với đường thẳng a mà a vuông góc với (α) .

Cách chứng minh đường thẳng vuông góc với mặt phẳng cực hay

Cách 3. Chứng minh d vuông góc với (Q) và (Q) // (P).

* Chứng minh hai đường thẳng vuông góc

- Để chứng minh d ⊥ a, ta có thể chứng minh bởi một trong các cách sau:

+ Chứng minh d vuông góc với (P) và (P) chứa a.

+ Sử dụng định lí ba đường vuông góc.

+ Sử dụng các cách chứng minh đã biết ở phần trước.

B. Ví dụ minh họa

Ví dụ 1: Cho hình chóp S. ABC có SA ⊥ (ABC) và tam giác ABC vuông ở B , AH là đường cao của tam giác SAB. Khẳng định nào sau đây sai?

A. SA ⊥ BC

B. AH ⊥ BC

C. AH ⊥ AC

D. AH ⊥ SC

Hướng dẫn giải

Cách chứng minh đường thẳng vuông góc với mặt phẳng cực hay

Chọn C

Cách chứng minh đường thẳng vuông góc với mặt phẳng cực hay

Vậy câu C sai.

Ví dụ 2: Cho tứ diện SABC có ABC là tam giác vuông tại B và SA ⊥ (ABC). Khẳng định nào sau đây là đúng nhất.

Cách chứng minh đường thẳng vuông góc với mặt phẳng cực hay

Hướng dẫn giải

Cách chứng minh đường thẳng vuông góc với mặt phẳng cực hay

Cách chứng minh đường thẳng vuông góc với mặt phẳng cực hay

Chọn A

Ví dụ 3: Cho tứ diện ABCD có AB = AC và DB = DC. Khẳng định nào sau đây đúng?

A. AB ⊥ (ABC)

B. AB ⊥ BD

C. AB ⊥ (ABD)

D. BC ⊥ AD

Hướng dẫn giải

Cách chứng minh đường thẳng vuông góc với mặt phẳng cực hay

Chọn D

Gọi E là trung điểm của BC.

Tam giác DCB cân tại D có DE là đường trung tuyến nên đồng thời là đường cao: DE ⊥ BC.

Tam giác ABC cân tại A có AE là đường trung tuyến nên đồng thời là đường cao : AE ⊥ BC

Khi đó ta có Cách chứng minh đường thẳng vuông góc với mặt phẳng cực hay

C. Bài tập vận dụng

Câu 1: Cho tứ diện ABCD có AB ⊥ CD và AC ⊥ BD. Gọi H là hình chiếu vuông góc của A lên mp(BCD) . Các khẳng định sau, khẳng định nào sai?

A. H là trực tâm tam giác BCD

B. CD ⊥ (ABH)

C. AD ⊥ BC

D. Các khẳng định trên đều sai.

Lời giải:

Ta có Cách chứng minh đường thẳng vuông góc với mặt phẳng cực hay

Tương tự BD ⊥ CH

Suy ra H là trực tâm tam giác BCD. Suy ra loại đáp án A, B

Ta có Cách chứng minh đường thẳng vuông góc với mặt phẳng cực hay suy ra loại C.

Chọn đáp án D

Câu 2: Cho hình chóp S.ABC có SA ⊥ (ABC). Gọi H, K lần lượt là trực tâm các tam giác SBC và ABC. Mệnh đề nào sai trong các mệnh đề sau?

A. BC ⊥ (SAH) B. HK ⊥ (SBC)

C. BC ⊥ (SAB) D. SH, AK và BC đồng quy

Lời giải:

Cách chứng minh đường thẳng vuông góc với mặt phẳng cực hay

Ta có BC ⊥ SA, BC ⊥ SH ⇒ BC ⊥ (SAH)

Ta có CK ⊥ AB, CK ⊥ SA ⇒ CK ⊥ (SAB) hay CK ⊥ SB

Mặt khác có CH ⊥ SB nên suy ra SB ⊥ (CHK) hay SB ⊥ HK, tương tự SC ⊥ HK nên HK ⊥ (SBC)

Gọi M là giao điểm của SH và BC.

Do BC ⊥ (SAH) ⇒ BC ⊥ AM hay đường thẳng AM trùng với đường thẳng AK

⇒ SH, AK và BC đồng quy

Do dó BC ⊥ (SAB). Sai

Chọn đáp án C

Câu 3: Cho hình chóp S. ABCD có đáy ABCD là hình thoi tâm O. Biết SA = SC và SB = SD. Khẳng định nào sau đây là sai?.

A. SO ⊥ (ABCD)

B. SO ⊥ AC

C. SO ⊥ BD

D. Cả A, B, C đều sai

Lời giải:

Cách chứng minh đường thẳng vuông góc với mặt phẳng cực hay

Ta có O là trung điểm của AC và SA = SC ⇒ SO ⊥ AC

Tương tự SO ⊥ BD

Vậy Cách chứng minh đường thẳng vuông góc với mặt phẳng cực hay

Chọn D

1 192 05/08/2024


Xem thêm các chương trình khác: