Lý thuyết, cách xác định và bài tập các trường hợp tính chất của hai tiếp tuyến cắt nhau
Với tài liệu về các trường hợp tính chất của hai tiếp tuyến cắt nhaubao gồm: lý thuyết và bài tập cũng như những định nghĩa, tính chất, các dạng bài sẽ giúp bạn nắm vững kiến thức và học tốt môn Toán hơn.
Tính chất của hai tiếp tuyến cắt nhau
A. Phương pháp giải
1. Định lí:
Nếu hai tiếp tuyến của một đường tròn cắt nhau tại một điểm thì:
+ Điểm đó cách đều 2 tiếp điểm.
+ Tia kẻ từ điểm đó đi qua tâm là tia phân giác của góc tạo bởi hai tiếp tuyến.
+ Tia kẻ từ tâm đi qua điểm đó là tia phân giác của góc tạo bởi hai bán kính đi qua các tiếp điểm.
2. Đường tròn nội tiếp:
Đường tròn tiếp xúc với ba cạnh của một tam giác gọi là đường tròn nội tiếp tam giác, cón tam giác gọi là ngoại tiếp đường tròn.
Tâm đường tròn nội tiếp tam giác là giao ba đường phân giác của tam giác đó.
3. Đường tròn bàng tiếp tam giác
Đường tròn tiếp xúc với một cạnh của một tam giác và tiếp xúc với các phần kéo dài của hai cạnh kia gọi là đường tròn bàng tiếp tam giác.
Tâm của đường tròn bàng tiếp tam giác trong góc A là giao điểm của hai đường phân giác các góc ngoài tại B và C, hoặc là giao điểm của đường phân giác góc A và đường phân giác góc ngoài tại B(hoặc C). Với một tam giác , có ba đường tròn bàng tiếp.
B. Bài tập tự luận
Bài 1: Cho đường tròn (O), điểm A nằm ngoài đường tròn. Kẻ các tiếp tuyến AM, AN với đường tròn (M, N là các tiếp điểm).
a, Chứng minh rằng OA ⊥ MN
b, Vẽ đường kính NOC. Chứng minh rằng MC//AO.
c, Tính độ dài các cạnh của tam giác AMN biết QM=3cm, OA=5cm.
Hướng dẫn giải
a, Ta có:
AM = AN( theo tính chất của 2 tiếp tuyến cắt nhau)
Mà OM = ON( vì cùng bằng R)
Suy ra AO là đường trung trực của MN.
Suy ra OA ⊥ MN
b, Xét tam giác MNC có: NC là đường kính nên suy ra ∠ NMC = 90o
=> NM ⊥ MC
Mà OA ⊥ MN (chứng minh trên)
MC//OA.
c, Xét tam giác vuông AMO. Theo định lý Py-ta-go ta có:
AM = √(AO2 - OM2)(cm) = 4(cm)
Vì AM = AN nên AN = 4cm.
Ta có: OA ⊥ MN (chứng minh trên)
Xét tam giác vuông AMO. Theo hệ thức lượng trong tam giác vuông ta có:
AO.MD = AM.MO
5.MD = 4.3
Suy ra MD = 12/5
Vì MN = 2 MD = 2.12/5 = 24/5(cm)
Vậy AM = AN = 4cm; MN = 24/5 cm.
Bài 2: Cho đường tròn(O), điểm M nằm bên ngoài đường tròn. Kẻ tiếp tuyến MD, ME với đường tròn (D, E là các tiếp điểm). Qua điểm I thuộc cung nhỏ DE, kẻ tiếp tuyến với đường tròn, cắt MD và ME theo thứ tự ở P và Q. Biết MD=4cm, tính chu vi tam giác MPQ.
Hướng dẫn giải
Ta có:
+ PD và PI là hai tiếp tuyến của đường tròn tâm (O) cắt nhau tại P
Suy ra PD = PI
+ QI và QE là hai tiếp tuyến của đường tròn tâm (O) cắt nhau tại Q
Suy ra QI = QE
+ MD và ME là hai tiếp tuyến của đường tròn tâm (O) cắt nhau tại M
Suy ra MD = ME
Chu vi tam giác MPQ là: MP + PQ + MQ
= MD- PD + PI + IQ + ME - QE
= MD - PI + PI + QE + MD - QE
= 2MD = 2.4 = 8(cm)
Vậy chu vi tam giác MPQ là 8cm.
Bài 3: Cho nửa đường tròn tâm O đường kính AB. Gọi Ax, By là các tia vuông góc với AB(Ax, By và nửa đường tròn thuộc cùng một nửa mặt phẳng bờ AB).Gọi M là điểm bất kì thuộc tia Ax. Qua M kẻ tiếp tuyến với nửa đường tròn, cắt By ở N.
a, Tính số đo góc MON.
b, Chứng minh rằng MN = AM + BN.
c, chứng minh rằng AM.BN = R2(R là bán kính của đường tròn).
Hướng dẫn giải
Ta có: NB và NE là 2 tiếp tuyến cắt nhau tại N
=> ∠ O1 = ∠ O2; ∠N1 = ∠ N2 (theo tính chất 2 tiếp tuyến cắt nhau).
Và OB = OE ; NB = NE (theo tính chất 2 tiếp tuyến cắt nhau).
Ta có: ME và MA là 2 tiếp tuyến cắt nhau tại M
=> O3 = O4 và ∠M1 = ∠M2 (theo tính chất 2 tiếp tuyến cắt nhau).
OA=OE; ME=MA ((theo tính chất 2 tiếp tuyến cắt nhau).
Ta có: ∠O1 + ∠O2 + ∠O3 + ∠O4 = 180o
Mà ∠O1 = ∠O2 và ∠O3 = ∠O4 nên suy ra 2∠O2 + 2∠O3 = 180o
=> ∠O2 + ∠O3 = 90p.
b, Ta có: MN = ME + NE = AM + BN(vì ME=MA; NB=NE( chứng minh trên))
c, Ta có: ∠M1 + ∠O4 = 90o (vì tam giác MAO vuông tại O)
mà ∠M1 = ∠M2 (chứng minh trên)
=> ∠M2 + ∠O4 = 90o
Mặt khác ∠M2 + ∠N1 = 90o (vì tam giác MON vuông tại O)
=> ∠O4 = ∠N1
Mà ∠N1 = ∠N2
Suy ra ∠O4 = ∠N2
Xét tam giác MAO và tam giác OBN có:
∠A = ∠B = 900
∠O4 = ∠N2 (chứng minh trên)
=> tam giác MAO = tam giác OBN (g-g)
=> MA.BN = AO.OB
=> MA.BN = R2 (điều phải chứng minh)
Bài 4: Cho tam giác ABC, đường tròn (K) bàng tiếp trong góc A tiếp xúc với các tia AB và AC theo thứ tự tại E và F. Cho BC=a, AC=b, AB=c. Chứng minh rằng:
a, AE = AF = (a+b+c):2
b, BE = (a+b-c):2
c, CF = (a+c-b):2
Hướng dẫn giải
a, Vì AE và AF là 2 tiếp tuyến cắt nhau tại A nên ta suy ra AE=AF.
Vì BE và BG là 2 tiếp tuyến cắt nhau tại B nên ta suy ra BE=BG.
Vì CG và CF là 2 tiếp tuyến cắt nhau tại C nên ta suy ra CG=CF.
Ta có: AE+AF= AB+BE+AC+CF = AB+BG+AC+GC (vì BE=BG;CG=CF).
= AB + AC + (BG+GC)= AB + AC + BC = a+b+c
Vì AE=AF nên suy ra 2 AF=2 AE=a+b+c
Suy ra AE=AF=(a+b+c):2
Tham khảo thêm các Chuyên đề Toán lớp 9 khác:
Xem thêm các chương trình khác:
- Các dạng bài tập Tiếng Anh thông dụng nhất
- 3000 câu hỏi ôn tập môn Tiếng Anh có đáp án
- Toàn bộ kiến thức về cụm động từ | Định nghĩa và cách dùng
- 500 đoạn văn Tiếng Anh thông dụng nhất và cách làm
- 1000 câu hỏi ôn tập môn Công nghệ có đáp án
- 1000 câu hỏi ôn tập Giáo dục công dân
- 3000 câu hỏi ôn tập môn Vật lí có đáp án
- Tổng hợp Dạng bài - Công thức môn Vật lí
- Phương trình hóa học | Tổng hợp PTHH của các chất hữu cơ, vô cơ chính xác nhất
- Đồng phân & Công thức cấu tạo của các chất hữu cơ
- Nhận biết các chất Hóa học
- Cấu hình electron
- So sánh bán kính nguyên tử và bán kính ion
- 1000 câu hỏi ôn tập môn Hóa có đáp án
- Wiki các chất hóa học | Định nghĩa, tính chất, nhận biết, điều chế, ứng dụng
- Cách đọc danh pháp hóa học (chương trình mới) đầy đủ nhất
- Công thức Lewis của một số chất thường gặp (chương trình mới)
- Công thức electron của một số chất thường gặp (chương trình mới)
- Công thức cấu tạo của một số chất thường gặp (chương trình mới)
- Công thức hợp chất khí với hidro của các nguyên tố (phổ biến) | Cách viết công thức hợp chất khí với hidro
- Công thức hidroxit cao nhất của các nguyên tố (phổ biến) | Cách viết công thức hidroxit cao nhất
- Công thức oxit cao nhất của các nguyên tố (phổ biến) | Cách viết công thức oxit cao nhất
- 2000 câu hỏi ôn tập môn Tin học có đáp án
- 3000 câu hỏi ôn tập môn Lịch sử có đáp án
- 3000 câu hỏi ôn tập môn Địa lí có đáp án
- 2000 câu hỏi ôn tập môn Sinh học có đáp án
- Tổng hợp Dạng bài - Công thức môn Sinh học
- Tổng hợp về các tác giả văn học
- 3000 câu hỏi ôn tập môn Ngữ văn có đáp án
- Tổng hợp kiến thức Ngữ Văn
- Trò chơi Powerpoint | Game Powerpoint
- Tổng hợp bài thu hoạch BDTX Giáo viên mầm non (2024) theo Thông tư 12
- Tổng hợp bài thu hoạch BDTX Giáo viên tiểu học (2024)
- Tổng hợp bài thu hoạch BDTX Giáo viên THCS (2024)
- Tổng hợp bài thu hoạch BDTX Giáo viên THPT (2024)