Bất đẳng thức bunhiacopxki và hệ quả (2025) chi tiết nhất
Với tài liệu về Bất đẳng thức bunhiacopxki bao gồm: lý thuyết và bài tập cũng như những định nghĩa, tính chất, các dạng bài sẽ giúp bạn nắm vững kiến thức và học tốt môn Toán hơn.
Bất đẳng thức bunhiacopxki
I. Lý thuyết tổng hợp về BĐT Bunhiacopxki
1. Định nghĩa
Bất đẳng thức Bunhiacopxki có tên gọi ban đầu bất đẳng thức Cauchy – Bunhiacopxki – Schwarz sau đó rút gọn lại gọi theo tên của nhà toán học người Nga Bunhiacopxki. Bất đẳng thức này do 3 nhà toán học nghiên cứu và phát triển. Trong lĩnh vực toán học, bất đẳng thức này được ứng dụng khá nhiều để giải các bài toán chứng minh bất đẳng thức và tìm cực trị.
2. Công thức BĐT Bunhiacopxki
+ Bất đẳng thức Bunhiacopxki dạng cơ bản:
Dấu “=” xảy ra khi và chỉ khi
+ Bất đẳng thức Bunhiacopxki cho 2 bộ số:
Với hai bộ số và ta có:
Dấu “=” xảy ra khi và chỉ khi
Với quy ước nếu một số nào đó (i = 1, 2, 3, …, n) bằng 0 thì tương ứng bằng 0
3. Hệ quả của BĐT Bunhiacopxki
4. Chứng minh BĐT Bunhiacopxki
II. Ví dụ minh họa
Ví dụ 1: Cho a, b, c là các số thực dương bất kỳ. Chứng minh rằng:
Lời giải:
Áp dụng bất đẳng thức Bunhiacopxki ta có:
(điều phải chứng minh)
Dấu “=” xảy ra khi và chỉ khi a = b = c
Ví dụ 2: Tìm giá trị lớn nhất của biểu thức
Lời giải:
Điều kiện:
Áp dụng bất đẳng thức Bunhiacopxki có:
A max = 2 khi (thỏa mãn)
Vậy max A = 2 khi và chỉ khi x = 3
III. Bài tập về BĐT Bunhiacopxki
Bài 1: Chứng minh rằng nếu a, b, c là độ dài ba cạnh của một tam giác có p là nửa chu vi thì
Lời giải:
Áp dụng bất đẳng thức Bunhiacopxki có:
(điều phải chứng minh)
Dấu “=” xảy ra khi và chỉ khi hay tam giác là tam giác đều
Bài 2. Cho các số thực dương a, b, c sao cho .
Chứng minh rằng:
Bài 3. Cho các số thực dương a, b, c. Chứng minh rằng:
Bài 4: Tìm giá trị lớn nhất của các biểu thức sau:
a,
b,
Bài 5: Cho a, b, c là các số thực dương tùy ý. Chứng minh rằng:
(gợi ý: biến đổi vế trái thành rồi áp dung bất đẳng thức Bunhiacopxki)
Bài 6: Cho a, b, c là các số thực dương, . Chứng minh rằng:
Bài 7: Cho a, b, c > 0 thỏa mãn abc = 1. Chứng minh:
Bài 8: Cho x > 0 và y > 0 thỏa mãn x2 + y2 ≤ x + y. Chứng minh: x + 3y ≤ 2 +
Bài 9:. Cho các số thực dương a, b, c sao cho .
Chứng minh rằng: .
Xem thêm các chương trình khác:
- Các dạng bài tập Tiếng Anh thông dụng nhất
- 3000 câu hỏi ôn tập môn Tiếng Anh có đáp án
- Toàn bộ kiến thức về cụm động từ | Định nghĩa và cách dùng
- 500 đoạn văn Tiếng Anh thông dụng nhất và cách làm
- 1000 câu hỏi ôn tập môn Công nghệ có đáp án
- 1000 câu hỏi ôn tập Giáo dục công dân
- 3000 câu hỏi ôn tập môn Vật lí có đáp án
- Tổng hợp Dạng bài - Công thức môn Vật lí
- Phương trình hóa học | Tổng hợp PTHH của các chất hữu cơ, vô cơ chính xác nhất
- Đồng phân & Công thức cấu tạo của các chất hữu cơ
- Nhận biết các chất Hóa học
- Cấu hình electron
- So sánh bán kính nguyên tử và bán kính ion
- 1000 câu hỏi ôn tập môn Hóa có đáp án
- Wiki các chất hóa học | Định nghĩa, tính chất, nhận biết, điều chế, ứng dụng
- Cách đọc danh pháp hóa học (chương trình mới) đầy đủ nhất
- Công thức Lewis của một số chất thường gặp (chương trình mới)
- Công thức electron của một số chất thường gặp (chương trình mới)
- Công thức cấu tạo của một số chất thường gặp (chương trình mới)
- Công thức hợp chất khí với hidro của các nguyên tố (phổ biến) | Cách viết công thức hợp chất khí với hidro
- Công thức hidroxit cao nhất của các nguyên tố (phổ biến) | Cách viết công thức hidroxit cao nhất
- Công thức oxit cao nhất của các nguyên tố (phổ biến) | Cách viết công thức oxit cao nhất
- 2000 câu hỏi ôn tập môn Tin học có đáp án
- 3000 câu hỏi ôn tập môn Lịch sử có đáp án
- 3000 câu hỏi ôn tập môn Địa lí có đáp án
- 2000 câu hỏi ôn tập môn Sinh học có đáp án
- Tổng hợp Dạng bài - Công thức môn Sinh học
- Tổng hợp về các tác giả văn học
- 3000 câu hỏi ôn tập môn Ngữ văn có đáp án
- Tổng hợp kiến thức Ngữ Văn
- Trò chơi Powerpoint | Game Powerpoint
- Tổng hợp bài thu hoạch BDTX Giáo viên mầm non (2024) theo Thông tư 12
- Tổng hợp bài thu hoạch BDTX Giáo viên tiểu học (2024)
- Tổng hợp bài thu hoạch BDTX Giáo viên THCS (2024)
- Tổng hợp bài thu hoạch BDTX Giáo viên THPT (2024)