Công thức tìm điểm đối xứng qua đường thẳng hay và chi tiết - Toán lớp 10

Với Công thức tìm điểm đối xứng qua đường thẳng hay và chi tiết Toán lớp 10 Hình học chi tiết nhất giúp học sinh dễ dàng nhớ toàn Công thức tìm điểm đối xứng qua đường thẳng hay và chi tiết biết cách làm bài tập Toán 10. Mời các bạn đón xem:

1 17,921 06/04/2022


Công thức tìm điểm đối xứng qua đường thẳng hay và chi tiết - Toán lớp 10

I. Lý thuyết tổng hợp.

- Đường trung trực: Đường trung trực của đoạn thẳng AB là đường thẳng vuông góc với AB tại trung điểm của AB.

- Điểm A và B đối xứng qua đường thẳng d khi và chỉ khi d là đường trung trực của đoạn thẳng AB.

II. Các công thức.

- Cho đường thẳng d: ax + by + c = 0, điểm A(xA;yA) không thuộc d. Tìm điểm B(xB;yB) là điểm đối xứng với A qua d, cách làm như sau:

+ Tìm điểm H(xH;yH) là hình chiếu vuông góc của A lên d:

HdaxH+byH+c=0 (1)

Vectơ chỉ phương của d là u=(b;a)

AHdAHu 

b(xHxA)a(yHyA)=0 (2)

Giải hệ (1) và (2) ta được tọa độ điểm H.

+ Biết H là trung điểm của AB, từ đó tìm ra tọa độ của B:

xB=2xHxA

yB=2yHyA

III. Ví dụ minh họa.

Bài 1: Cho đường thẳng d: x - y = 0 và điểm A(1; 3). Tìm điểm đối xứng với A qua d.

Lời giải:

Dễ thấy điểm A không thuộc đường thẳng d

Gọi điểm đối xứng với A qua d là A’(x’; y’)

Gọi H(x0;y0) là hình chiếu của điểm A trên đường đường thẳng d.

Ta có: Hdx0y0=0x0=y0 (1)

Mặt khác: Vectơ pháp tuyến của d là  n=(1;1) Vectơ chỉ phương của d là u=(1;1)

u=(1;1) 

AHdAHu

1(x01)+1(y03)=0

x0+y04=0 (2)

Từ (1) và (2) 2x0=4x0=2

x0=y0=2H(2;2)

Có H là trung điểm của AA’ nên: 

x'=2.21y'=2.23x'=3y'=1A'(3;1)

Bài 2: Cho điểm M(2; -3). Tìm điểm M’ đối xứng với M qua đường thẳng  d: -2x + y = 0.

Lời giải:

Dễ thấy điểm M không thuộc đường thẳng d

Gọi điểm đối xứng với M qua d là M’(x’; y’)

Gọi H(x0;y0) là hình chiếu của điểm M trên đường đường thẳng d.

Ta có: Hd2x0+y0=0 (1)

Mặt khác: Vectơ pháp tuyến của d là n=(2;1) 

 Vectơ chỉ phương của d là u=(1;2)

MHdMHu 

1(x02)+2(y0+3)=0

x0+2y0=4 (2)

Từ (1) và (2) 

2x0+y0=0x0+2y0=4x0=45y0=85

H(45;85)

Có H là trung điểm của MM’ nên: 

x'=2.452y'=2.85+3x'=185y'=15M'(185;15)

Bài 3: Cho điểm B(1; 4). Điểm B’ đối xứng với B qua d: 4x – 5y + 1 = 0. Tìm B’.

Lời giải:

Dễ thấy điểm B không thuộc vào đường thẳng d.

Gọi điểm đối xứng với B qua d là B’(x’; y’)

Gọi H(x0;y0) là hình chiếu của điểm B trên đường đường thẳng d.

Ta có: Hd4x05y0=1 (1)

Mặt khác: Vectơ pháp tuyến của d là n=(4;5) 

 Vectơ chỉ phương của d là u=(5;4)

BHdBHu 

5(x01)+4(y04)=0

5x0+4y0=21 (2)

Từ (1) và (2) 

4x05y0=15x0+4y0=21x0=10141y0=8941H(10141;8941)

Có H là trung điểm của BB’ nên: 

x'=2.101411y'=2.89414x'=16141y'=1441B'(16141;1441)

IV. Bài tập tự luyện.

Bài 1: Cho đường thẳng d: 4x – 2y + 1 = 0 và điểm A(1; 2). Tìm điểm A’ đối xứng với A qua d.

Bài 2: Cho đường thẳng d: 4x + 1 = 0 và điểm B(1; 0). Tìm điểm B’ đối xứng với B qua d.

Xem thêm tổng hợp công thức môn Toán lớp 10 đầy đủ và chi tiết khác:

Công thức viết phương trình đường thẳng theo đoạn chắn hay, chi tiết nhất 

Công thức viết phương trình đường phân giác hay chi tiết nhất 

Công thức về vị trí tương đối của hai đường thẳng hay và chi tiết nhất 

Công thức tính góc giữa hai đường thẳng hay, chi tiết nhất 

Công thức tính khoảng cách từ một điểm đến một đường thẳng 

1 17,921 06/04/2022