Công thức về tập hợp (2024) chi tiết nhất

Với Công thức về tập hợp Toán lớp 10 chi tiết nhất giúp học sinh dễ dàng nhớ toàn bộ Công thức về tập hợp từ đó biết cách làm bài tập Toán 10. Mời các bạn đón xem:

1 24,365 12/03/2024
Tải về


Phương pháp giải về tập hợp chi tiết nhất

I. Lí thuyết tổng hợp

- Tập hợp có thể hiểu là sự gom nhóm hữu hạn hay vô hạn các đối tượng nào đó, cùng có một đặc điểm đặc trưng nào đó giống nhau.

- Cho tập hợp A. Nếu a là phần tử của tập hợp A thì ta viết aA. Nếu a không phải là phần tử của A thì ta viết aA.

- Cách viết tập hợp:

+ Liệt kê các phần tử của tập hợp bằng cách viết tất cả phần tử của tập hợp vào giữa hai dấu “{ }” và mỗi phần tử ngăn cách nhau bởi dấu “;”.

+ Chỉ ra tính chất đặc trưng cho các phần tử của tập hợp.

+ Minh họa cho tập hợp bằng một đường cong khép kín, gọi là biểu đồ ven.

- Tập hợp rỗng: Là tập hợp không chứa phần tử nào. Kí hiệu

- Tập hợp con của một tập hợp: Cho 2 tập hợp A, B , nếu mọi phần tử của B cũng là phần tử của A thì B là tập hợp con của A. Kí hiệu: BA

- Hai tập hợp bằng nhau: Hai tập hợp A và B bằng nhau nếu A là tập con của B và đồng thời B cũng là tập con của A. Kí hiệu: A = B

- Phép toán tập hợp:

+ Phép giao: Tập hợp C gồm các phần tử vừa thuộc tập hợp A, vừa thuộc tập hợp B được gọi là giao của A và B. Kí hiệu: C=AB

+ Phép hợp: Tập hợp C gồm các phần tử thuộc tập hợp A hoặc thuộc tập hợp B được gọi là hợp của A và B. Kí hiệu: C=AB

+ Phép hiệu: Tập hợp C gồm các phần tử thuộc tập hợp A nhưng không thuộc tập hợp B được gọi là hiệu của A và B. Kí hiệu: C = A \ B

+ Phép lấy phần bù: Khi B là tập hợp con của tập hợp A thì phép hiệu A \ B được gọi là phần bù của B trong A. Kí hiệu: CAB

- Chú ý:

+ A là tập hợp con của A.

+ Tập hợp rỗng là tập hợp con của mọi tập hợp.

+ Tập hợp A có n phần tử thì nó có 2n tập con.

+ Nếu tập hợp A là tập hợp con của tập hợp B và B là tập hợp con của C thì A là tập hợp con của C.

II. Các công thức

- Tập hợp con:

+ BAx:xBxA

+ ABBCAC

+ AA;A

+ Tập hợp A có n phần tử thì số tập hợp con của A là 2n

- Hai tập hợp bằng nhau: A=BABBA

- Phép giao: AB={x:xAxB}

- Phép hợp: AB={x:xA hoặc xB}

- Phép hiệu:

+ A\B={x:xAxB}

+ A\A=;A\=A

+ A\BB\A

- Phép lấy phần bù: BACAB=A\B

III. Ví dụ minh họa

Bài 1: Cho tập hợp A = {1; 2; 3} và tập hợp B = {1; 2; 3; 4; 5}. Cho tập hợp C, biết B là tập hợp con của C. Chứng minh A là tập hợp con của B, A là tập hợp con của C, tính số lượng tập hợp con của A.

Lời giải:

Ta có:

x=1Ax=1B

x=2Ax=2B

x=3Ax=3B

x:xAxB

AB (điều cần phải chứng minh)

Ta lại có:

AB (chứng minh trên)

BC (theo đề bài)

AC (điều cần phải chứng minh)

Tập hợp A có 3 phần tử, số lượng tập hợp con của tập hợp A là: 23=8

Bài 2: Cho tập hợp A gồm các phần tử là nghiệm của phương trình x23x+2=0 và tập hợp B gồm các phần tử là nghiệm của phương trình (x – 1)(x – 2) = 0. Hãy chứng minh rằng A = B.

Lời giải:

Xét phương trình x23x+2=0 có: 1 – 3 + 2 = 0

Phương trình có hai nghiệm: x1=1;x2=2

A = {1; 2}

Xét phương trình (x – 1)(x – 2) = 0x=1x=2

B = {1; 2}

Ta có:

x = 1 thuộc A và cũng thuộc B.

x = 2 thuộc A và cũng thuộc B.

AB (1)

x = 1 thuộc B và cũng thuộc A.

x = 2 thuộc B và cũng thuộc A.

BA (2)

Từ (1) và (2) ta có A = B.

Bài 3: Cho tập hợp A = {1; 12; 20; 21} , tập hợp B = {1; 12; 20} và tập hợp C = {20; 19; 12; 3}. Tìm các tập hợp AC ,AC , CAB và A\C.

Lời giải:

Xét hai tập hợp A và C ta có:

x = 1 thuộc A và không thuộc C

x = 12 thuộc A và thuộc C

x = 20 thuộc A và thuộc C

x = 21 thuộc A và không thuộc C

x = 19 thuộc C và không thuộc A

x = 3 thuộc C và không thuộc A

AC={12;20} ,AC={1;3;12;19;20;21}, A\C = {1; 21}

Xét hai tập hợp A và B có:

x = 1 vừa thuộc B vừa thuộc A

x = 12 vừa thuộc B vừa thuộc A

x = 20 vừa thuộc B vừa thuộc A

BACAB=A\B

x = 21 thuộc A và không thuộc B

CAB=A\B={21}

IV. Bài tập tự luyện

Bài 1: Cho tập hợp P = {34; 56; 72; 12; 4} . Viết một tập hợp con của P khác tập hợp rỗng. Tính số tập hợp con của tập hợp P.

Bài 2: Cho tập hợp A = {45; 7; 5; 23; 12} và tập hợp M = {5; 4; 7; 3}. Tìm AM,AM,A\M.

Xem thêm tổng hợp công thức môn Toán lớp 10 đầy đủ và chi tiết khác:

Công thức về mệnh đề và mệnh đề phủ định

Công thức về mối liên hệ các tập hợp số

Cách xét tính đồng biến, nghịch biến của hàm số chi tiết

Cách xét tính chẵn, lẻ của hàm số chi tiết

Tất tần tật công thức về Hàm số y = |x|

1 24,365 12/03/2024
Tải về