Công thức phân tích vectơ (2024) chi tiết nhất

Với Công thức Phân tích vectơ lớp 10 chi tiết nhất - Toán lớp 10 chi tiết nhất giúp học sinh dễ dàng nhớ toàn bộ Công thức Phân tích vectơ lớp 10 chi tiết nhất biết cách làm bài tập Toán 10. Mời các bạn đón xem:

1 7,156 12/03/2024
Tải về


Công thức Phân tích vectơ lớp 10 chi tiết nhất - Toán lớp 10

A. Lí thuyết tóm tắt.

- Định nghĩa tích của vectơ với một số: Cho số k0 và vectơ a0. Tích của vectơ với số k là một vectơ, kí hiệu là ka và có độ dài bằng ka.

- Điều kiện để hai vectơ cùng phương: ab cùng phương khi và chỉ khi tồn tại số k để a=kb.

- Điều kiện ba điểm thẳng hàng: Ba điểm phân biệt A, B, C thẳng hàng khi và chỉ khi có tồn tại một số k khác 0 để AB=kAC.

- Tính chất của tích vectơ với một số:

+) k(a+b)=ka+kb

+) (h+k)a=ha+ka

+) h(ka)=(hk)a

+) 1.a=a;(1)a=a

+) 0.a=0; k.0=0

- Phân tích một vectơ theo hai vectơ không cùng phương: hai vectơ ab không cùng phương. Khi đó mọi vectơ đều phân tích được một cách duy nhất theo hai vectơ ab sao cho x=ha+kb. (h, k là duy nhất).

B. Các công thức.

- Quy tắc trung điểm: I là trung điểm của AB

MA+MB=2MI ( M tùy ý )

- Quy tắc trọng tâm: G là trọng tâm tam giác ABC

MA+MB+MC=3MG ( M tùy ý )

- Quy tắc ba điểm: AB+BC=AC.

- Phân tích một vectơ theo hai vectơ ab không cùng phương: x=ha+kb (h, k là duy nhất)

- Độ dài vectơ tích của vectơ với một số: ka=k.a

- Điều kiện 2 vectơ ab(b0) cùng phương: a=kb ( k0)

- Điều kiện 3 điểm thẳng hàng: AB=kAC

- Tính chất của tích vectơ với một số:

k(a+b)=ka+kb(h+k)a=ha+kah(ka)=(hk)a1.a=a;(1)a=a0.a=0; k.0=0

C. Ví dụ minh họa.

Bài 1: Cho AK và BM là hai trung tuyến của tam giác ABC. Hãy phân tích vectơ AB theo hai vectơ AKBM.

Công thức Phân tích vectơ lớp 10 chi tiết nhất - Toán lớp 10 (ảnh 1)

Giải:

Vì K là trung điểm của BC nên CB=2KB.

Vì M là trung điểm của AC nên AC=2AM.

Áp dụng quy tắc ba điểm ta có:

AB=AC+CBAB=2AM+2KBAB=2(AB+BM)+2(KA+AB)AB=2AB+2BM+2KA+2ABAB=4AB+2BM+2KAAB4AB=2BM2AK3AB=2BM2AKAB=23BM+23AK

Bài 2: Xét đoạn thẳng AB có trung điểm M, điểm N nằm ngoài AB, khác M. Phân tích vectơ NM theo hai vectơ NANB.

Giải:

Áp dụng quy tắc trung điểm ta có:

NA+NB=2NMNM=12NA+12NB

Bài 3: Cho hình bình hành ABCD. Gọi I là trung điểm của CD. Lấy điểm M trên đoạn BI sao cho BM = 2MI. Chứng minh A, M, C thẳng hàng.

Công thức Phân tích vectơ lớp 10 chi tiết nhất - Toán lớp 10 (ảnh 1)

Giải:

Ta có: BM = 2MI

BM=2MI

Áp dụng quy tắc ba điểm có: BM=BA+AM

BA+AM=2MI

Mà ABCD là hình bình hành nên: BA=CD

CD+AM=2MI

Mà I là trung điểm CD nên: CD=2CI.

2CI+AM=2MIAM=2MI2CIAM=2(MI+IC)AM=2MC

Vậy A, M, C thẳng hàng.

D. Bài tập tự luyện.

Bài 1: Cho tam giác ABC có P là trung điểm của AB và hai điểm M, N thỏa mãn các hệ thức MA2MC=0NA+2NC=0. Chứng minh rằng M, N, P thẳng hàng.

Bài 2: Cho hình bình hành ABCD có M, N là trung điểm của các cạnh DC, DA. Phân tích vectơ AB theo hai vectơ AMBN.

Công thức Phân tích vectơ lớp 10 chi tiết nhất - Toán lớp 10 (ảnh 1)

Bài 3: Cho tam giác A, B, C. Có N là điểm sao cho CN=12BC, G là trọng tâm tam giác ABC. Phân tích AC theo AGAN.

Xem thêm tổng hợp công thức môn Toán lớp 10 đầy đủ và chi tiết khác:

Trọn bộ công thức cơ bản về Vectơ dầy đủ

Công thức về tổng và hiệu hai vectơ chi tiết nhất

Quy tắc trung điểm, trọng tâm, quy tắc hình bình hành vecto lớp 10 chi tiết nhất

Công thức về Hệ trục tọa độ lớp 10 chi tiết nhất

Công thức góc giữa hai vectơ chi tiết nhất

1 7,156 12/03/2024
Tải về