Phương pháp xác định tính đúng sai của mệnh đề (2024) hay nhất

Với cách giải xác định tính đúng sai của mệnh đề môn Toán lớp 10 Đại số gồm phương pháp giải chi tiết, bài tập minh họa có lời giải và bài tập tự luyện sẽ giúp học sinh biết cách làm bài tập xác định tính đúng sai của mệnh đề lớp 10. Mời các bạn đón xem:

1 5,721 12/03/2024
Tải về


Phương pháp xác định tính đúng sai của mệnh đề hay nhất

Dạng 1: Xác định tính đúng sai của mệnh đề.

1. Lý thuyết

- Mệnh đề là một câu khẳng định đúng hoặc một câu khẳng định sai.

- Tính đúng - sai có thể chưa xác định hoặc không biết nhưng chắc chắn đúng hoặc sai cũng là một mệnh đề.

- Một mệnh đề không thể vừa đúng vừa sai.

2. Phương pháp giải

- Dựa vào định nghĩa mệnh đề để xác định tính đúng, sai của mệnh đề đó.

- Với mệnh đề chứa biến: Tìm tập D của các biến x để P(x) đúng hoặc sai.

3. Ví dụ minh họa

Ví dụ 1: Xác định tính đúng sai của các mệnh đề sau:

a. 4 là số chẵn.

b. 5 là số nguyên tố.

c. 2 là số chính phương.

Hướng dẫn:

a. Mệnh đề đúng.

b. Mệnh đề đúng vì 5 chỉ có đúng 2 ước là 1 và chính nó nên 5 là số nguyên tố.

(Số nguyên tố là những số tự nhiên và chỉ có 2 ước là 1 và chính nó)

c. Mệnh đề sai vì 2 không biểu diễn được dưới dạng bình phương của một số tự nhiên nên nó không phải số chính phương.

Ví dụ 2: Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?

a. Nếu ab thì a2b2.

b. Nếu a chia hết cho 3 thì a chia hết cho 6 .

c. Số π lớn hơn 2 và nhỏ hơn 4 .

d. 2 và 3 là hai số nguyên tố cùng nhau.

Hướng dẫn:

a. Mệnh đề sai, chẳng hạn -1 > -2 nhưng (1)2<(2)2.

b. Mệnh đề sai, chẳng hạn 15 chia hết cho 3 nhưng 15 không chia hết cho 6.

c. Mệnh đề đúng. Ta có π=3,14159, suy ra π lớn hơn 2 và nhỏ hơn 4.

d. Mệnh đề đúng vì 2 và 3 có ước chung lớn nhất bằng 1 nên 2 và 3 là hai số nguyên tố cùng nhau.

Ví dụ 3: Xét tính đúng, sai của các mệnh đề:

a. x; x2+10.

b. x; 9x24=0.

c. x; 3x25=0.

Hướng dẫn:

a. Mệnh đề đúng vì x2+11>0;x.

b. Mệnh đề đúng vì tồn tại x=23 là số hữu tỉ để 9x24=0.

c. Mệnh đề sai vì với x=12 là số hữu tỉ thì 3x250.

4. Bài tập tự luyện

Câu 1: Trong các phát biểu sau, phát biểu nào là mệnh đề đúng:

A. π là một số hữu tỉ.

B. Tổng của hai cạnh một tam giác lớn hơn cạnh thứ ba.

C. Bạn có chăm học không?

D. Hôm nay trời đep quá!

Hướng dẫn:

Chọn B. Đáp án B nằm trong bất đẳng thức tam giác: “ Trong một tam giác, tổng độ dài hai cạnh bất kì bao giờ cũng lớn hơn độ dài cạnh còn lại”.

Đáp án A sai vì π là một số vô tỉ.

Đáp án C sai vì đây là câu hỏi.

Đáp án D sai vì đây là câu cảm thán.

Câu 2 : Trong các mệnh đề sau, tìm mệnh đề đúng?

A. x;x2>0.

B. x;x3.

C. x;x2<0.

D. x;x>x2.

Hướng dẫn :

Chọn D. Ta có: tồn tại 0,5 để 0,5>0.52.

Đáp án A sai vì với x = 0 thì x2=0.

Đáp án B sai vì với x = 5 thì 5 không chia hết cho 3.

Đáp án C sai vì với x = 0 thì x2=0.

Câu 3: Cho mệnh đề chứa biến: Px="x+15x2 x". Mệnh đề nào sau đây là đúng?

A. P(0).

B. P(5).

C. P(3).

D. P(4).

Hướng dẫn:

Chọn B.

Vì thay lần lượt các giá trị x bằng 0; 5; 3; 4 vào P(x) ta thấy x=5 cho mệnh đề đúng.

Câu 4: Cho các mệnh đề sau:

P: “x:x2=4”; Q: “x:x2+x+10”; R: “x:x2>0”.

Phát biểu nào đúng trong các phát biểu dưới đây:

A. P sai, Q sai, R đúng.

B. P sai, Q đúng, R đúng.

C. P đúng, Q đúng, R sai.

D. P sai, Q đúng, R sai.

Hướng dẫn:

Chọn D.

Mệnh đề P sai vì không có số thực nào có bình phương là số âm.

Mệnh đề Q đúng vì phương trình x2+x+1=0 vô nghiệm nên với mọi số thực thì x2+x+10.

Mệnh đề R sai vì có giá trị x=0 để 02=0.

Câu 5: Trong các mệnh đề sau, mệnh đề nào sai:

A.2+3=123

B. 1 là số nguyên tố.

C. 3+22232=224

D. 2

Hướng dẫn:

Chọn B. Đáp án B sai vì số nguyên tố phải là số tự nhiên lớn hơn 1.

Đáp án A đúng vì :

2+3=2+32323=223223=123

Đáp án C đúng vì:

3+22232=5+26526=46=224

Đáp án D đúng.

Câu 6: Cho biết x là một phần tử của tập hợp A, xét các mệnh đề sau:

(I): xA

(II): {x}A

(III): xA

(IV): {x}A

Trong các mệnh đề trên, mệnh đề nào là đúng:

A. I và II.

B. I và III.

C. I và IV.

D. II và IV.

Hướng dẫn:

Chọn C.

(II): {x}A sai do giữa hai tập hợp {x} và A không có quan hệ “thuộc”.

(III): xA sai do giữa phần tử x và tập hợp A không có quan hệ “con”.

Câu 7: Cho tam giác ABC với H là chân đường cao từ A. Mệnh đề nào sau đây sai?

A. “ABC là tam giác vuông ở A thì 1AH2=1AB2+1AC2”.

B. “ABC là tam giác vuông ở A thì AB2=BH.BC”.

C. “ABC là tam giác vuông ở A thì HA2=HB.HC”.

D. “ABC là tam giác vuông ở A thì BA2=BC2+AC2”.

Hướng dẫn :

Chọn D. Đáp án đúng phải là: ABC là tam giác vuông ở A thì BC2=AB2+AC2 ( định lý Pitago).

Các đáp án A, B, C là hệ thức lượng trong tam giác vuông.

Câu 8: Cho mệnh đề chứa biến Pn:n21 chia hết cho 4 với là số nguyên. Xét xem các mệnh đề P(5) và (P4) đúng hay sai?

A. P(5) đúng và P(2) đúng.

B. P(5) sai và P(2) sai.

C. P(5) đúng và P(2) sai.

D. P(5) sai và P(2) đúng.

Hướng dẫn:

Chọn C.

Thay n = 5 vào n21 ta được P(5) = 24. Thay n = 2 vào n21 ta được P(2) = 3.P(5) đúng do 244 còn P(2) sai do 3 không chia hết cho 4.

Câu 9: Với giá trị thực nào của x mệnh đề chứa biến Px:2x21<0 là mệnh đề đúng:

A. 0.

B. 5.

C. 1.

D. 45.

Hướng dẫn

Chọn A. Thay lần lượt các giá trị của x là 0; 5; 1; 4 vào P(x) ta thấy P0=2.021=1<0 nên đáp án đúng là A.

Câu 10: Mệnh đề nào sau đây sai?

A. 5 không phải là số hữu tỉ.

B. 2021 là số tự nhiên lẻ.

C. π là một số vô tỉ.

D. 10>20.

Hướng dẫn:

Chọn D. Vì 10=10; 20=20 nên 10<20.

Đáp án A đúng vì 5 là số vô tỉ, không phải số hữu tỉ.

Đáp án B đúng vì số lẻ là số có tận cùng là 1; 3; 5; 7; 9.

Đáp án C đúng vì π là một số vô tỉ.

Xem thêm các dạng bài tập Toán lớp 10 có đáp án và lời giải chi tiết khác:

Mệnh đề và suy luận toán học hay và chi tiết

Mệnh đề phủ định và cách giải các dạng bài toán

Tập hợp, cách xác định tập hợp và cách giải bài tập

Các phép toán trên tập hợp và cách giải bài tập

Các bài toán về các tập hợp số và cách giải

1 5,721 12/03/2024
Tải về