Công thức tính Khoảng cách từ một điểm đến một đường thẳng (2024) và cách giải các dạng bài tập
Với tài liệu về Khoảng cách từ một điểm đến một đường thẳng bao gồm: lý thuyết và bài tập cũng như những định nghĩa, tính chất, các dạng bài sẽ giúp bạn nắm vững kiến thức và học tốt môn Toán hơn.
Khoảng cách từ một điểm đến một đường thẳng
I. Lý thuyết Khoảng cách từ một điểm đến một đường thẳng
Khoảng cách từ một điểm đến một đường thẳng là gì?
- Cho đường thẳng d: ax + by + c = 0 và điểm M(x’; y’). Khi đó khoảng cách từ điểm M đến đường thẳng d được kí hiệu là d(M; d) và .
- Chú ý: Trong trường hợp đường thẳng Δ chưa viết dưới dạng tổng quát thì đầu tiên ta cần đưa đường thẳng d về dạng tổng quát.
- Cho hai điểm M(x; y) và N(x’; y’), khoảng cách giữa M và N là:
II. Công thức tính khoảng cách từ một điểm đến một đường thẳng
- Cho đường thẳng d: ax + by + c = 0 và điểm M(x’; y’), ta có:
- Cho hai điểm M(x; y) và N(x’; y’), ta có:
III. Ví dụ minh họa
Bài 1: Cho một đường thẳng có phương trình có dạng d: – x + 3y + 1 = 0. Hãy tính khoảng cách từ Q (2; 1) tới đường thẳng d.
Lời giải:
Ta có:
Bài 2: Cho một đường thẳng có phương trình có dạng d’: 2x + 2y + 5 = 0. Tính khoảng cách từ M (2; 3) tới đường thẳng d’.
Lời giải:
Ta có:
Bài 3: Cho hai điểm A(2; 7) và B(1; 3). Tính độ dài đoạn thẳng AB.
Lời giải:
Ta có:
IV. Bài tập vận dụng
Bài 1. Khoảng cách từ giao điểm của hai đường thẳng (a): x - 3y + 4 = 0 và
(b): 2x + 3y - 1 = 0 đến đường thẳng ∆: 3x + y + 16 = 0 bằng:
A. 2√10
B.
C.
D. 2
Lời giải
Gọi A là giao điểm của hai đường thẳng ( a) và ( b) tọa độ điểm A là nghiệm hệ phương trình :
⇒ A( -1; 1)
Khoảng cách từ điểm A đến đường thẳng ∆ là :
d( A; ∆) = =
Chọn C
Bài 2. Trong mặt phẳng với hệ tọa độ Oxy , cho tam giác ABC có A( 1; 2) ; B(0; 3) và C(4; 0) . Chiều cao của tam giác kẻ từ đỉnh A bằng:
A.
B. 3
C.
D.
Lời giải
+ Phương trình đường thẳng BC:
⇒ ( BC) : 3(x - 0) + 4( y - 3) = 0 hay 3x + 4y - 12 = 0
⇒ chiều cao của tam giác kẻ từ đỉnh A chính là khoảng cách từ điểm A đến đường thẳng BC.
d( A; BC) = =
Chọn A.
Bài 3. Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có A(3; -4); B(1; 5) và C(3;1) . Tính diện tích tam giác ABC.
A. 10
B. 5
C. √26
D. 2√5
Lời giải
+ Phương trình BC:
⇒Phương trình BC: 2( x - 1) + 1( y - 5) = 0 hay 2x + y - 7 = 0
⇒ d( A;BC) = = √5
+ BC = = 2√5
⇒ diện tích tam giác ABC là: S = .d( A; BC).BC = .√5.2√5 = 5
Chọn B.
Bài 4. Hai cạnh của hình chữ nhật nằm trên hai đường thẳng d1 : 4x - 3y + 5 = 0 và
d2: 3x + 4y – 5 = 0, đỉnh A( 2; 1). Diện tích của hình chữ nhật là:
A. 1.
B. 2
C. 3
D. 4
Lời giải
+ Nhận xét : điểm A không thuộc hai đường thẳng trên.
⇒ Độ dài hai cạnh kề của hình chữ nhật bằng khoảng cách từ A(2; 1) đến hai đường thẳng trên, do đó diện tích hình chữ nhật bằng
S = = 2 .
Chọn B.
Bài 5: Cho một đường thẳng có phương trình có dạng d: –2x + 4y + 1 = 0. Tính khoảng cách từ P(0; 1) tới đường thẳng d.
Bài 6: Cho một đường thẳng có phương trình có dạng d: x + 5y + 1 = 0. Tính khoảng cách từ M (5; 6) tới đường thẳng d.
Bài 7. Hai cạnh của hình chữ nhật nằm trên hai đường thẳng (a): 4x - 3y + 5 = 0 và (b): 3x + 4y - 5 = 0. Biết hình chữ nhật có đỉnh A (2;1). Tính diện tích của hình chữ nhật.
Bài 8. Đường tròn ( C) có tâm I (-2; -2) và tiếp xúc với đường thẳng d: 5x + 12y - 10 = 0. Tính bán kính R của đường tròn (C).
Xem thêm tổng hợp công thức môn Toán lớp 10 đầy đủ và chi tiết khác:
Công thức viết phương trình đường thẳng theo đoạn chắn hay, chi tiết nhất
Công thức tìm điểm đối xứng qua đường thẳng hay và chi tiết
Công thức viết phương trình đường phân giác hay chi tiết nhất
Công thức về vị trí tương đối của hai đường thẳng hay và chi tiết nhất
Xem thêm các chương trình khác:
- Soạn văn 10 (hay nhất) | Để học tốt Ngữ Văn 10 (sách mới)
- Soạn văn 10 (ngắn nhất) | Để học tốt Ngữ văn 10 (sách mới)
- Văn mẫu lớp 10 (cả ba sách) | Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Giải sgk Lịch sử 10 | Giải bài tập Lịch sử 10 Học kì 1, Học kì 2 (sách mới)
- Đề thi Lịch sử 10
- Bài tập Tiếng Anh 10 theo Unit (sách mới) có đáp án
- Giải sgk Tiếng Anh 10 (thí điểm)