Tìm nghiệm của phương trình: sinx + căn 3 cosx = 1

Vietjack.me giới thiệu bộ câu hỏi ôn tập Toán có đáp án được biên soạn bám sát chương trình học giúp bạn ôn luyện và bổ sung kiến thức môn Toán tốt hơn. Mời các bạn đón xem:

1 917 06/12/2024


Tìm nghiệm của phương trình: sinx + căn 3 cosx = 1

Đề bài: Tìm nghiệm của phương trình: sinx + 3cosx = 1

Lời giải:

Ta có:

sinx+3cosx=112sinx+32cosx=12cosπ3sinx+sinπ3cosx=12sinx+π3=12sinx+π3=sinπ6x+π3=π6+k2πx+π3=ππ6+k2π    kx+π3=π6+k2πx+π3=5π6+k2π     kx=π6+k2πx=π2+k2π     k

Vậy tập nghiệm của phương trình là D=π6+k2π|kπ2+k2π|k

*Phương pháp giải:

Công thức nghiệm cơ bản phương trình sin x = m

Trường hợp 1: |m| > 1. Phương trình vô nghiệm.

Trường hợp 2: |m| ≤ 1. Phương trình có nghiệm.

- Nếu m biểu diễn được dưới dạng sin của những góc đặc biệt thì:

sinx = m ⇔ sinx = sinα ⇔ Công thức giải phương trình lượng giác cơ bản

- Nếu m không biểu diễn được dưới dạng sin của những góc đặc biệt thì:

sinx = m ⇔ Công thức giải phương trình lượng giác cơ bản

- Sử dụng công thức lượng giác hai góc phụ nhau: sin (π2-x)=cosx

*Lý thuyết:

* Công thức nghiệm cơ bản

a) Phương trình sin x = m

Trường hợp 1: |m| > 1. Phương trình vô nghiệm.

Trường hợp 2: |m| ≤ 1. Phương trình có nghiệm.

- Nếu m biểu diễn được dưới dạng sin của những góc đặc biệt thì:

sinx = m ⇔ sinx = sinα ⇔ Công thức giải phương trình lượng giác cơ bản

- Nếu m không biểu diễn được dưới dạng sin của những góc đặc biệt thì:

sinx = m ⇔ Công thức giải phương trình lượng giác cơ bản

- Các trường hợp đặc biệt:

sinx = 0 ⇔ x = kπ (k ∈ Z)

sinx = 1 ⇔ x = Công thức giải phương trình lượng giác cơ bản + k2π (k ∈ Z)

sinx = -1 ⇔ x = -Công thức giải phương trình lượng giác cơ bản + k2π (k ∈ Z)

b) Phương trình cos x = m

Trường hợp 1: |m| > 1. Phương trình vô nghiệm.

Trường hợp 2: |m| ≤ 1 . Phương trình có nghiệm.

- Nếu m biểu diễn được dưới dạng cos của những góc đặc biệt thì:

Công thức giải phương trình lượng giác cơ bản

- Nếu m không biểu diễn được dưới dạng cos của những góc đặc biệt thì:

Công thức giải phương trình lượng giác cơ bản

- Các trường hợp đặc biệt:

cosx = 0 ⇔ x = Công thức giải phương trình lượng giác cơ bản + kπ (k ∈ Z)

cosx = 1 ⇔ x = k2π (k ∈ Z)

cosx = -1 ⇔ x = π + k2π (k ∈ Z)

c) Phương trình: tan x = m. Điều kiện: x ≠ Công thức giải phương trình lượng giác cơ bản + kπ (k ∈ Z)

- Nếu m biểu diễn được dưới dạng tan của những góc đặc biệt thì:

tan x = m ⇔ tan x = tan α ⇔ x = α + kπ (k ∈ Z)

- Nếu m không biểu diễn được dưới dạng tan của những góc đặc biệt thì:

tan x = m ⇔ x = αrctan m + kπ (k ∈ Z)

d) Phương trình: cot x = m. Điều kiện: x ≠ kπ (k ∈ Z)

- Nếu m biểu diễn được dưới dạng cot của những góc đặc biệt thì:

cot x = m ⇔ cot x = cot α ⇔ x = α + kπ (k ∈ Z)

- Nếu m không biểu diễn được dưới dạng cot của những góc đặc biệt thì:

cot x = m ⇔ x = αrccot m + kπ (k ∈ Z)

* Mở rộng công thức nghiệm, với u(x) và v(x) là hai biểu thức của x.

Công thức giải phương trình lượng giác cơ bản

cos u(x) = cos v(x) ⇔ u(x) = Công thức giải phương trình lượng giác cơ bản + k2π (k ∈ Z)

tan u(x) = tan v(x) ⇔ u(x) = v(x) + kπ (k ∈ Z)

cot u(x) = cot v(x) ⇔ u(x) = v(x) + kπ (k ∈ Z)

Xem thêm

TOP 40 câu Trắc nghiệm Phương trình lượng giác cơ bản (có đáp án 2023) – Toán 11

Lý thuyết Phương trình lượng giác cơ bản (mới + Bài Tập) – Toán 11

Xem thêm các câu hỏi ôn tập Toán chọn lọc, hay khác:

1 917 06/12/2024


Xem thêm các chương trình khác: