1500 câu hỏi ôn tập môn Toán có đáp án (Phần 80)
Bộ 1000 câu hỏi ôn tập môn Toán có đáp án Phần 80 hay nhất được biên soạn và chọn lọc giúp bạn ôn luyện và đạt kết quả cao trong bài thi môn Toán.
1500 câu hỏi ôn tập Toán (Phần 80)
Câu 1: Tìm ước chung lớn nhất của 64, 72, 448, 100.
Lời giải:
Ta có: 64 = 26
72 = 23.32
448 = 26.7
100 = 22.52
ƯCLN (64; 72; 448; 100) = 22 = 4.
Câu 2: Tìm x biết (4x – 3)2 – 3x(3 – 4x) = 0.
Lời giải:
(4x – 3)2 – 3x(3 – 4x) = 0
⇔ (3 – 4x)2 – 3x(3 – 4x) = 0
⇔ (3 – 4x)(3 – 4x – 3x) = 0
⇔ (3 – 4x)(3 – 7x) = 0
⇔
⇔
Vậy S =
Lời giải:
Hình bình hành có diện tích lớn nhất là khi hình bình hành có chiều cao bằng độ dài đáy.
Mà tổng độ dài đáy và chiều cao là 18 cm
Suy ra: chiều cao = độ dài đáy = 18 : 2 = 9 (cm)
Diện tích lớn nhất của hình đó là: Smax = 9 . 9 = 81 (cm2).
Câu 4: 2022 là hợp số hay số nguyên tố?
Lời giải:
Ta thấy: 2022 là hợp số vì 2022 chia hết cho 2; 3; 6; ….
Số nguyên tố chỉ có 2 ước là 1 và chính nó.
Vậy 2022 là hợp số.
Lời giải:
n = 163
Các số tự nhiên từ 1 đến 16 chia thành 3 nhóm:
- Nhóm I gồm các số tự nhiên chia hết cho 3 gồm 55 số
- Nhóm II gồm các số tự nhiên cho 3 dư 1 gồm 66 số.
- Nhóm III gồm các số tự nhiên cho 3 dư 2 gồm 5 số.
Để ba số có tổng chia hết cho 3 thì xảy ra các trường hơp sau:
- Cả ba bạn viết được số thuộc nhóm I có 5353 cách.
- Cả ba bạn viết được số thuộc nhóm II có 6363 cách.
- Cả ba bạn viết được số thuộc nhóm III có 5353 cách.
Mỗi bạn viết được một số thuộc một nhóm có 3! . (5.6.5).
Vậy có tất cả: 53 + 63 + 53 + 3! . (5.6.5) = 1366
Xác suất cần tính bằng:
Câu 6: Cho dãy số (un) bởi: u1 = 1 và un+1 = 5un + 8 với mọi n ≥ 1.
a) Chứng minh rằng dãy số (vn) với vn = un +2 là một cấp số nhân.
b) Dựa vào kết quả phần a) hãy tìm số hạng tổng quát của dãy số (un).
Lời giải:
Ta có: un+1 = 5un + 8
vn = un + 2
Suy ra: vn+1 = un+1 + 2 = 5un + 8 + 2 = 5un + 10 = 5(un + 2) = 5vn (*)
Vậy vn là cấp số nhân với công bội q = 5.
b) Từ (*) ta có:
v1 = u1 + 2 = 1 + 2 = 3
v2 = 5v1 = 5.3 = 15
…
vn = 5vn–1
Số hạng tổng quát của vn là: vn = u1.qn–1 = 3.5n–1
⇒ un = vn – 2 = 3.5n–1 – 2.
Câu 7: Có bao nhiêu số tự nhiên có hai chữ số mà hai chữ số của nó đều chẵn?
Lời giải:
Chữ số hàng chục có thể chọn trong các chữ số 2,4,6,8 do đó có 4 cách chọn.
Chữ số hàng đơn vị có thể chọn trong các chữ số 0,2,4,6,8 do đó có 5 cách chọn.
Vậy theo quy tắc nhân ta có 4.5 = 20 số có hai chữ số mà hai chữ số của nó đều chẵn.
Câu 8: Giá trị của chữ số 6 ở phần thập phân trong số 63,546 là?
Lời giải:
Giá trị của chữ số 6 ở phần thập phân là: 6 phần nghìn tức là .
Lời giải:
Số tiền lãi người đó có sau tháng thứ nhất là:
8000000 . 1,2 : 100 = 96000(đồng)
Tổng số tiền cả gốc lẫn lãi người đó có sau tháng thứ nhất là:
8000000 + 96000 = 8096000(đồng)
Số tiền lãi người đó có sau tháng thứ hai là:
8096000 . 1,2 : 100 = 97152(đồng)
Tổng số tiền cả gốc lẫn lãi người đó có sau tháng thứ hai là:
8096000 + 97152 = 8193152(đồng)
Lời giải:
Số tiền lãi là:
4500000 . 12 : 100 = 540000 (đồng)
Đáp số: 540000 đồng.
Câu 11: Một số chia cho 9 có số dư là 6. Hỏi số đó có chia hết cho 3 không ?
Lời giải:
Giả sử số đó là x, thương là n
Ta có: x : 9 = n (dư 6)
x = 9n + 6
Vì 9n chia hết cho 3 và 6 chia hết cho 3 nên 9n + 6 chia hết cho 3
Hay x chia hết cho 3
Vậy số đó chia hết cho 3.
Lời giải:
Hoành độ giao điểm của d1 và d2 là nghiệm của phương trình:
2x + 1 = x – 1
⇒ x = –2
Với x = –2 ⇒ y = –2 – 1 = –3
Suy ra hai đường thẳng d1 và d2 cắt nhau tại điểm A(–2; –3)
Để ba đường thẳng đồng quy thì điểm A(–2; –3) thuộc đồ thị hàm số y = (m + 1)x – 2. Khi đó ta có:
–3 = (m + 1).(–2) – 2
⇒
Vậy với thì ba đường thẳng đã cho đồng quy.
Câu 13: Tìm tham số m để ba đường thẳng y = x – 2; y = 2x + m + 1 và y = 3x – 2 đồng quy.
Lời giải:
Hoành độ giao điểm của y = x – 2 và y = 3x – 2 là nghiệm của phương trình:
x – 2 = 3x – 2
⇒ x = 0
Với x = 0 ⇒ y = 0 – 2 = –2
Suy ra hai đường thẳng y = x – 2 và y = 3x – 2 cắt nhau tại điểm B(0; –2)
Để ba đường thẳng đồng quy thì điểm B(0; –2) thuộc đồ thị hàm số y = 2x + m + 1. Khi đó ta có:
0 = 2.(–2) + m + 1
⇒ m – 3 = 0
⇒ m = 3
Vậy với m = 3 thì ba đường thẳng đã cho đồng quy.
Lời giải:
Khối đa diện đều loại {4;3} là hình lập phương.
Khối lập phương có 6 mặt là hình vuông cạnh a.
Diện tích một mặt là a2
Vậy tổng diện tích các mặt của hình lập phương đó là: S = 6a2.
Câu 15: Tính nhanh: A = 1 + 3 – 5 – 7 + 9 + 11 – … – 397 – 399.
Lời giải:
Biểu thức đã cho có (399 – 1) : 2 + 1 = 200 số
1 + 3 – 5 – 7 + 9 + 11 – 13 – 17 + ... + 393 + 395 – 397 – 399
= (1 + 3 – 5 – 7) + (9 + 11 – 13 – 15) + ..... + (393 + 395 – 397 – 399)
= (–8) + (–8) + ... + (–8)
Ta suy biểu thức ban đầu có 200 số, chia ra các cặp số, mỗi cặp gồm 4 số.
Vậy có số cặp là: 200 : 4 = 50 (cặp)
Vậy A = (–8) × 50 = – 400.
Lời giải:
Trong một ngày đêm kim giờ quay hai vòng
Vậy trong một ngày đêm đồng hồ đó đánh
(1 + 2 + ... + 12) . 2 = 12 . (12 + 1) = 156 tiếng.
Câu 17: Tìm tập hợp số nguyên x biết 3x + 2 chia hết cho x – 1.
Lời giải:
Ta có: 3x + 2 chia hết cho x – 1
3x + 2 = 3x – 3 + 5 = 3(x – 1) + 5
Vì 3(x – 1) chia hết cho x – 1 nên để 3x + 2 chia hết cho x – 1 thì 5 chia hết cho x–1
⇒ x – 1 thuộc Ư(5) = {1; –1; 5; –5}
⇒ x ∈ {2; 0; 6; –4}
Vậy x ∈{2; 0; 6; –4}.
Câu 18: Đặt dấu ngoặc một cách thích hợp để tính tổng đại số sau:
b) 13 – 12 + 11 + 10 – 9 + 8 – 7 – 6 + 5 – 4 + 3 + 2 – 1.
Lời giải:
a) 942 – 2567 + 2563 – 1942
= (942 – 1942) – (2567 – 2563)
= –1000 – 4
= –1004
b) 13 – 12 + 11 – 10 – 9 + 8 – 7 – 6 + 5 – 4 – 3 + 2 – 1
= ( 13 – 12 ) + ( 11 – 10 ) – ( 9 – 8 ) – 7 – ( 6 – 5 ) – 4 – ( 3 – 2 ) – 1
= 1 + 1 – 1 – 7 – 1 – 4 – 1 – 1
= –13.
Lời giải:
Tuổi của 2 cha con hiện nay là:
64 – 4 . 2 = 56(tuổi)
Tuổi của con là:
(56 − 32) : 2 = 12 (tuổi)
Tuổi của cha là:
56 – 12 = 44 (tuổi)
Đáp số: Con: 12 tuổi, Cha: 44 tuổi.
Lời giải:
Gọi số dụng cụ mỗi ngày người đó làm là x
số ngày người đó làm việc là y
⇒ Tổng số dụng cụ được giao là x.y
Nếu mỗi ngày tăng 3 dụng cụ thì hoàn thành sớm 2 ngày
⇒(x + 3)(y – 2) = xy
⇔ xy + 3y – 2x – 6 = xy
⇔ –2x + 3y = 6 (1)
Nếu mỗi ngày làm giảm 3 dụng cụ thì tg kéo dài 3 ngày
⇒ (x – 3)(y – 3) = xy
⇔ xy – 3y + 3x – 9 = xy
⇔ 3x – 3y = 9
⇔ x – y = 3
⇔ x = 3 + y (2)
Từ (1) và (2) ta có: –2(3 + y) + 3x = 6
⇔ –6 – 2y + 3y = 6
⇔ y = 12 (ngày)
⇒ x = 3 + y = 12 + 3 = 15 (dụng cụ)
Tổng số dụng cụ là: 12.15 = 180 (dụng cụ).
Lời giải:
Nếu tăng chiều rộng và giảm chiều dài 5m thì thửa rộng đó thành hình vuông, hay là nếu tăng chiều rộng và giảm chiều dài 5m thì ta được 2 đoạn bằng nhau
Ta có sơ đồ như hình vẽ:
Hiệu của chiều dài và chiều rộng của thửa ruộng đó là:
5 + 5 = 10 (m)
Nửa chu vi thửa ruộng đó là:
120 : 2 = 60 (m)
Chiều dài của thửa ruộng đó là:
(60 + 10) : 2 = 35 (m)
Chiều rộng của thửa ruộng là:
(60 – 10) : 2 = 25 (m)
Diện tích của thửa ruộng đó là:
35 . 25 = 875 (m2)
Lời giải:
Số lượng số tự nhiên có 3 chữ số lập từ 8 chữ số trên là 7 . 8 . 8 = 448 số
⇒ Tập M có 448 số
Gọi số thỏa mãn đề là
Ta có: b < a, b < c
+) b = 0 ⇒ Có 7 cách chọn chữ số a, c
⇒ Có tất cả: 7 . 7 = 49 số cần tìm
+) b = 1 ⇒ Có 6 cách chọn chữ số a, c
+) b = 2 ⇒ Có 5 cách chọn chữ số a, c
+) b = 3 ⇒ Có 4 cách chọn chữ số a, c
+) b = 4 ⇒ Có 3 cách chọn chữ số a, c
+) b = 5 ⇒Có 2 cách chọn chữ số a, c
+) b = 6 ⇒ Có 1 cách chọn chữ số a, c
+) b = 7 ⇒ Có 0 cách chọn chữ số a, c
⇒ Số cách chọn a, b, c thỏa mãn đề là:
7 . 7 + 6 . 6 + 5 . 5 + 4 . 4 + 3 . 3 + 2 . 2 + 1 . 1 = 140
⇒ Xác suất để cả 2 số lấy được đều có chữ số hàng chục nhỏ hơn các chữ số hàng trăm và hàng đơn vị là: .
Lời giải:
Gọi thời gian đự định sản xuất xong là x (ngày) , điều kiện x > 1
Thời gian thực tế đã sản xuất được là x – 1 (ngày)
Số chi tiết máy dự định sản xuất là 300x (chi tiết)
Số chi tiết thực tế sản xuất được là 400.(x–1) (chi tiết )
Theo đề ta có phương trình: 300x + 600 = 400(x–1)
300x + 600 = 400x – 400
⇔ 100x = 1000
⇔ x = 10
Vậy số chi tiết dự định sản xuất là 300.10 = 3000.
b) Một hàn khách thuê taxi quãng đường 40km phải trả số tiền là bao nhiêu?
Lời giải:
a) + Nếu 0 < x < 0,8:
y = 11000 (đồng)
+ Nếu 0,8 ≤ x ≤ 30
y = 11000 + 15800(x − 0,8) = 15800x – 1640 (đồng)
+ Nếu x ≥ 31:
y = 11000 + 15800.(30 − 0,8) + 12500(x − 30) = 12500x + 97360(đồng)
b) Khi x = 40:
y = 12500 . 40 + 97360 = 597360 (đồng)
Vậy số tiền phải trả là 597360 đồng.
Câu 25: Cho một số có 4 chữ số khác nhau biết tổng các chữ số là 9. Tính tích của các chữ số đó?
Lời giải:
Ta thấy: 9 = 6 + 2 + 1 + 0.
Số có 4 chữ số khác nhau và tổng các chữ số bằng 9 là 6210; 6120; 1260; 1620 ; 2160; 2610; ….
Tích các chữ số là: 2 . 6 . 1 . 0 = 0
Vậy tích của các chữ số là 0.
Câu 26: Cho đoạn thẳng AB và điểm C thuộc đoạn AB sao cho 3AC = 2BC. Biết AB = 10 cm, tính độ dài AC, CB?
Lời giải:
Vì 3AC = 2BC nên coi AC là 2 phần thì BC là 3 phần
Tổng số phần bằng nhau là:
2 + 3 = 5 (phần)
Độ dài AC là:
10 : 5 . 2 = 4 (cm)
Độ dài BC là:
10 – 4 = 6 (cm)
Câu 27: Một hình vuông có chu vi là 24dm thì diện tích hình vuông đó là?
Lời giải:
Cạnh hình vuông là:
24 : 4 = 6 (dm)
Diện tích hình vuông là:
6 . 6 = 36 (dm2).
Câu 28: Có bao nhiêu cách để bỏ 4 lá thư vào 5 hộp thư?
Lời giải:
Lá thư thứ nhất có 5 cách xếp vào 5 hộp thư
Lá thư thứ hai có 5 cách xếp vào 5 hộp thư
Lá thư thứ ba có 5 cách xếp vào 5 hộp thư
Lá thư thứ tư có 5 cách xếp vào 5 hộp thư
Suy ra: có tất cả 5 . 5 . 5 . 5 = 625 cách xếp 4 lá thư vào 5 hộp thư
Câu 29: Một người đang dự định đi mua xe máy mà muốn chọn 1 trong hai loại xe sau:
Loại 1: Có giá 27 000 000 (đồng) và trung bình số ki–lô–mét đi được mỗi lít xăng là 58 km/lít xăng.
Lời giải:
Đối với xe loại 1, mỗi năm xe tiêu thụ hết:
7 250 : 58 = 125 (lít)
Suy ra mỗi năm, xe loại 1 tiêu thụ hết:
125.18 000 = 2 250 000 (đồng)
Hàm số của s theo t đối với xe loại 1:
s = 27 000 000 + 2 250 000.t
Đối với xe loại 2, mỗi năm xe tiêu thụ hết:
7 250 : 62,5 = 116 (lít)
Suy ra mỗi năm, xe loại 2 tiêu thụ hết:
116. 18 000 = 2 088 000 (đồng)
Hàm số của s theo t đối với xe loại 2:
s = 30 000 000 + 2 088 000.t
Lời giải:
Gọi số bạn nam là: x (x > 20) (bạn)( Do số bạn nam nhiều hơn nữ nên sô bạn nam nhiều hơn một nửa tổng số thành viên trong lớp)
Số bạn nữ là 40 − x (bạn)
Số tiền mua là: 260000 – 3000 = 257000( Đồng)
Số tiền bạn các bạn nam mua là: 5000x (Đồng)
Số tiền bạn các nữ mua là: 8000(40 − x) (Đồng)
Ta có phương trình sau:
5000x + 8000(40 − x) = 257000
⇔ 5000x + 320000 − 8000x = 257000
⇔ −3000x = 257000 − 320000
⇔ −3000x = −63000
⇔ x = 21
Vậy số bạn nam là: 21 bạn
Số bạn nữ là: 40 – 21 = 19 bạn.
Câu 31: Tìm x biết 5x3 – 20x = 0.
Lời giải:
5x3 – 20x = 0
⇔ x(5x2 – 20) = 0
⇔ 5x(x2 – 4) = 0
⇔ 5x(x – 2)(x + 2) = 0
⇔
Vậy x ∈ {–2; 0; 2}.
Câu 32: Tìm x biết (x – 5)(x + 5) + 3(3 – x) = –11 + 10x.
Lời giải:
x2 – 25 + 9 − 3x + 11 − 10x = 0
⇔ x2 − 13x – 14 = 0
⇔ x2 + x − 14x – 14 = 0
⇔ x(x + 1) − 14(x + 1) = 0
⇔ (x + 1)(x − 14) = 0
⇔
⇔
Vậy x = –1 hoặc x = 14
Lời giải:
Gọi 2x là số tờ tiền 20000 đồng thì x là số tờ tiền 100000 đồng
y là số tờ tiền 50000 đồng (x, y ∈ N*)
Tổng số tờ là 74 ⇒ 2x + x + y = 74 (1)
Tổng giá trị tiền là 3530 nghìn đồng
⇒ 20.2x + 100x + 50y = 3530 (2)
Từ (1), (2) ta có ⇒ x = 17; y = 23 (thỏa mãn)
Vậy số tờ tiền 20000 đồng là 34, số tờ tiền 50000 đồng là 23, số tờ tiền 100000 đồng là 17.
Lời giải:
Gọi số chuyến của xe thứ nhất, thứ hai, thứ ba lần lượt là x, y, z (0<x; y; z<500)
Theo bài ra ta có:
– Ba xe ô tô chở tổng cộng 50 chuyến ⇒ x + y + z = 50 (1)
– Số chuyến xe thứ nhất chở gấp rưỡi số chuyến thứ hai ⇒ x = 1,5y (2)
– Mỗi chuyến xe thứ nhất chở 2 tấn, xe thứ 2 chở 2,5 tấn, xe thứ 3 chở 3 tấn mà ba xe chở tổng cộng 118 tấn hàng
⇒ 2x + 2,5y + 3z = 118 (3)
Thay (2) vào (1) và (2) vào (3) ta có hệ phương trình:
⇔
và x = 1,5y = 1,5.16 = 24.
Vậy xe thứ nhất chở 24 chuyến, xe thứ hai chở 16 chuyến, xe thứ 3 chở 10 chuyến.
Lời giải:
Gọi a là chiều dài đúng của cây cầu
Suy ra: a = 152m ± 0,2m
⇒ 152 – 0,2 ≤ a ≤ 152 + 0,2
⇒ 151,8 ≤ a ≤ 152,2
Vậy chiều dài đúng của cây cầu là một số nằm trong khoảng 151,8m đến 152,2m
Sai số tương đối = 0,2 : 152 . 100% ≈ 0,13%.
Lời giải:
Gọi x (máy) là số máy mà phân xưởng cần đầu tư thêm (x ∈ ℕ*).
Số máy để đóng gói 600 sản phẩm là x + 20 (máy)
Ta có tỉ lệ thức:
⇔ 20.600 = 400.(x + 20)
⇔ 400(x + 20) = 12 000
⇔ x + 20 = 30
Do đó x = 30 − 20 = 10 (máy)
Vậy phân xưởng đó cần đầu tư thêm 10 máy.
Lời giải:
Đặt a = 70000000, m = 20%, n = 0,3%, t = 7%
Hết tháng thứ nhất, người đó có tổng số tiền tiết kiệm là:
T1 = am(1 + n)1
Hết tháng thứ hai, người đó có tổng số tiền tiết kiệm là:
T2 = (T1 + am)(1 + n) = am(1 + n)2 + am(1 + n)1
Hết tháng thứ 36, người đó có tổng số tiền tiết kiệm là:
T36 = am(1 + n)36 + am(1 + n)35 + … + am(1 + n) = am(1 + n)
Thay số vào ta được: T36 ≈ 53297684,73 (đồng).
Lời giải:
Xưởng sản xuất nước mắm đã sản xuất được 1230 lít nước mắm.
Mỗi can 2 lít thì cần số can là:
1230 : 2 = 615 (can)
Mỗi can 3 lít thì cần số can là:
1230 : 3 = 410 (can)
Mỗi can 5 lít thì cần số can là:
1230 : 5 = 246 (can)
Vậy ta hoàn thành bảng sau:
Số lít mỗi can |
2 lít |
3 lít |
5 lít |
Số can |
615 |
410 |
246 |
Câu 39: Phép tính với tổng sigma là gì? Cho ví dụ.
Lời giải:
Σ là chữ cái Hi Lạp (Sigma viết hoa, phân biệt sigma viết thường σ)
Đây là phép tổng, cộng liên tiếp nhiều hạng tử
Ví dụ: Cần tính A = 1 + 2 + 3 + 4 + … + 50 thì ta chỉ cần tính theo tổng sigma:
.
Câu 40: Tìm số chia cho 3 được 4 dư 9.
Lời giải:
Ta thấy trong 1 phép chia có dư thì số dư luôn nhỏ hơn số chia
Trong bài toán này số dư là 9 lớn hơn số chia là 3.
Vậy không tồn tại phép chia thỏa mãn 1 số chia 3 được thương là 4, dư 9.
Xem thêm các câu hỏi ôn tập Toán chọn lọc, hay khác:
Xem thêm các chương trình khác:
- Các dạng bài tập Tiếng Anh thông dụng nhất
- 3000 câu hỏi ôn tập môn Tiếng Anh có đáp án
- Toàn bộ kiến thức về cụm động từ | Định nghĩa và cách dùng
- 500 đoạn văn Tiếng Anh thông dụng nhất và cách làm
- 1000 câu hỏi ôn tập môn Công nghệ có đáp án
- 1000 câu hỏi ôn tập Giáo dục công dân
- 3000 câu hỏi ôn tập môn Vật lí có đáp án
- Tổng hợp Dạng bài - Công thức môn Vật lí
- Phương trình hóa học | Tổng hợp PTHH của các chất hữu cơ, vô cơ chính xác nhất
- Đồng phân & Công thức cấu tạo của các chất hữu cơ
- Nhận biết các chất Hóa học
- Cấu hình electron
- So sánh bán kính nguyên tử và bán kính ion
- 1000 câu hỏi ôn tập môn Hóa có đáp án
- Wiki các chất hóa học | Định nghĩa, tính chất, nhận biết, điều chế, ứng dụng
- Cách đọc danh pháp hóa học (chương trình mới) đầy đủ nhất
- Công thức Lewis của một số chất thường gặp (chương trình mới)
- Công thức electron của một số chất thường gặp (chương trình mới)
- Công thức cấu tạo của một số chất thường gặp (chương trình mới)
- Công thức hợp chất khí với hidro của các nguyên tố (phổ biến) | Cách viết công thức hợp chất khí với hidro
- Công thức hidroxit cao nhất của các nguyên tố (phổ biến) | Cách viết công thức hidroxit cao nhất
- Công thức oxit cao nhất của các nguyên tố (phổ biến) | Cách viết công thức oxit cao nhất
- 2000 câu hỏi ôn tập môn Tin học có đáp án
- 3000 câu hỏi ôn tập môn Lịch sử có đáp án
- 3000 câu hỏi ôn tập môn Địa lí có đáp án
- 2000 câu hỏi ôn tập môn Sinh học có đáp án
- Tổng hợp Dạng bài - Công thức môn Sinh học
- Tổng hợp về các tác giả văn học
- 3000 câu hỏi ôn tập môn Ngữ văn có đáp án
- Tổng hợp kiến thức Ngữ Văn
- Trò chơi Powerpoint | Game Powerpoint
- Tổng hợp bài thu hoạch BDTX Giáo viên mầm non (2024) theo Thông tư 12
- Tổng hợp bài thu hoạch BDTX Giáo viên tiểu học (2024)
- Tổng hợp bài thu hoạch BDTX Giáo viên THCS (2024)
- Tổng hợp bài thu hoạch BDTX Giáo viên THPT (2024)