Cho a, b, c là các số tự nhiên thỏa mãn (a – b) là số nguyên tố và 3c^2 = c(a + b) + ab

Vietjack.me giới thiệu bộ câu hỏi ôn tập Toán có đáp án được biên soạn bám sát chương trình học giúp bạn ôn luyện và bổ sung kiến thức môn Toán tốt hơn. Mời các bạn đón xem:

1 965 02/02/2024


Cho a, b, c là các số tự nhiên thỏa mãn (a – b) là số nguyên tố và 3c2 = c(a + b) + ab

Đề bài: Cho a, b, c là các số tự nhiên thỏa mãn (a – b) là số nguyên tố và 3c2 = c(a + b) + ab. Chứng minh rằng 8c + 1 là số chính phương.

Lời giải:

Ta có:

3c2 = c(a + b) + ab

2c2 = ca + cb + ab + c2

2c2 = c(a + c) + b(c + a)

2c2 = (a + c) (b + c)

Gọi d  gcd(a + c, b + c)

Do a – b = p P nên d = 1 hoặc d = p

+) Nếu d = 1

Thì a + c = x2, b + c = y2 (xy = 2c)

Suy ra p = (x – y)(x + y).p = 2 (vô lý)

p lẻ thì dễ thấy x=p+12=ab+12 y=ab12

Suy ra 2c=xy=ab1ab+14

Do đó 8c + 1 = (a – b)2 là số chính phương

+) Nếu d = p thì a + c = pm2, b + c = pn2 (2c = pmn)

Suy ra (m – n)(m + n) = 1

Do đó m = 1 và n = 0 (loại)

Vậy 8c + 1 là số chính phương.

Xem thêm các câu hỏi ôn tập Toán chọn lọc, hay khác:

1 965 02/02/2024


Xem thêm các chương trình khác: