Trong lớp 10C có 16 học sinh giỏi Toán, 15 học sinh giỏi Lí, 11 học sinh giỏi Hóa

Vietjack.me giới thiệu bộ câu hỏi ôn tập Toán có đáp án được biên soạn bám sát chương trình học giúp bạn ôn luyện và bổ sung kiến thức môn Toán tốt hơn. Mời các bạn đón xem:

1 3,071 02/02/2024


Trong lớp 10C có 16 học sinh giỏi Toán, 15 học sinh giỏi Lí, 11 học sinh giỏi Hóa

Đề bài: Trong lớp 10C có 16 học sinh giỏi Toán, 15 học sinh giỏi Lí, 11 học sinh giỏi Hóa. Biết rằng có 9 học sinh vừa giỏi Toán và Lí, 6 học sinh vừa giỏi Lí và Hóa, 8 học sinh vừa giỏi Hóa và Toán, trong đó có 11 học sinh giỏi đúng 2 môn. Hỏi có bao nhiêu học sinh trong lớp:

a) Giỏi cả ba môn.

b) Giỏi đúng 1 môn.

Lời giải:

a) Gọi A là tập hợp số học sinh giỏi Toán. Tức là, n(A) = 16.

B là tập hợp số học sinh giỏi Lí. Tức là, n(B) = 15.

C là tập hợp số học sinh giỏi Hóa. Tức là, n(C) = 11.

Có 9 học sinh vừa giỏi Toán và Lí. Suy ra n(A ∩ B) = 9.

Có 6 học sinh vừa giỏi Lí và Hóa. Suy ra n(B ∩ C) = 6.

Có 8 học sinh vừa giỏi Hóa và Toán. Suy ra n(A ∩ C) = 8.

Ta có sơ đồ Ven:

Tài liệu VietJack

Vì có 11 học sinh chỉ giỏi đúng 2 môn nên ta có:

n(A ∩ B) + n(B ∩ C) + n(C ∩ A) – 3.n(A ∩ B ∩ C) = 11.

9 + 6 + 8 – 3.n(A ∩ B ∩ C) = 11.

n(A ∩ B ∩ C) = 4.

Vậy có 4 học sinh trong lớp 10C giỏi cả ba môn.

b) Xét tổng n(A) + n(B) + n(C), có:

n(A ∩ B) + n(B ∩ C) + n(A ∩ C) được tính 2 lần nên ta phải trừ đi 1 lần;

n(A ∩ B ∩ C) được tính 3 lần nên ta phải trừ đi 2 lần.

Trong n(A ∩ B) + n(B ∩ C) + n(A ∩ C), có n(A ∩ B ∩ C) được tính 3 lần, trừ đi 1 lần n(A ∩ B) + n(B ∩ C) + n(A ∩ C) là trừ đi 3 lần n(A ∩ B ∩ C).

Như vậy, số học sinh chỉ giỏi một môn là:

n(A B C)

= n(A) + n(B) + n(C) – [n(A ∩ B) + n(A ∩ C) + n(B ∩ C)] + n(A ∩ B ∩ C).

= 16 + 15 + 11 – (9 + 8 + 6) + 4 = 23.

Xem thêm các câu hỏi ôn tập Toán chọn lọc, hay khác:

1 3,071 02/02/2024


Xem thêm các chương trình khác: