Tìm tất cả các giá trị thực của tham số m để hàm số chỉ có cực tiểu mà không có cực đại

Vietjack.me giới thiệu bộ câu hỏi ôn tập Toán có đáp án được biên soạn bám sát chương trình học giúp bạn ôn luyện và bổ sung kiến thức môn Toán tốt hơn. Mời các bạn đón xem:

1 2,921 03/12/2024


Tìm tất cả các giá trị thực của tham số m để hàm số chỉ có cực tiểu mà không có cực đại

Đề bài: Tìm tất cả các giá trị thực của tham số m để hàm số y=m+1x4mx2+32 chỉ có cực tiểu mà không có cực đại.

A. m < –1;

B. –1 < m < 0;

C. m > 1;

D. –1 ≤ m < 0.

Đáp án đúng là: D

* Lời giải:

Trường hợp 1: m = –1.

Khi đó y=x2+3232>0,  x .

Cho y’ = 0 2x = 0 x = 0.

Vì vậy hàm số không có cực đại, chỉ có cực tiểu x = 0 khi m = –1.

Trường hợp 2: m ≠ –1.

Hàm số đã cho không có cực đại m+1>0m0m>1m01<m0 .

Vậy –1 ≤ m ≤ 0 thỏa mãn yêu cầu bài toán.

*Phương pháp giải:

Tính y'

Tìm nghiệm y' thay vào y để tìm yCĐ

* Lý thuyết nắm thêm về cực trị hàm số:

- Định nghĩa.

Cho hàm số y = f(x) xác định và liên tục trên khoảng (a; b) (có thể a là -; b là +) và điểm x0(a; b).

a) Nếu tồn tại số h > 0 sao cho f(x) < f(x0) với mọi x(x0 – h; x0 + h) và xx0 thì ta nói hàm số f(x) đạt cực đại tại x0.

b) Nếu tồn tại số h > 0 sao cho f(x) > f(x0) với mọi x(x0 – h; x0 + h) và xx0 thì ta nói hàm số f(x) đạt cực tiểu tại x0.

- Chú ý:

1. Nếu hàm số f(x) đạt cực đại (cực tiểu) tại x0 thì x0 được gọi là điểm cực đại (điểm cực tiểu) của hàm số; f(x0) được gọi là giá trị cực đại (giá trị cực tiểu) của hàm số.

Kí hiệu là f (fCT) còn điểm M(x0; f(x0)) được gọi là điểm cực đại (điểm cực tiểu) của đồ thị hàm số.

2. Các điểm cực đại, cực tiểu được gọi chung là điểm cực trị. Giá trị cực đại (giá trị cực tiểu) còn gọi là cực đại (cực tiểu) và được gọi chung là cực trị của hàm số.

3. Dễ dàng chứng minh được rằng, nếu hàm số y = f(x) có đạo hàm trên khoảng (a; b) và đạt cực đại hoặc cực tiểu tại x0 thì f’(x0) = 0.

II. Điều kiện đủ để hàm số có cực trị

- Định lí 1

Giả sử hàm số y = f(x) liên tục trên khoảng K = (x0 – h; x0 + h) và có đạo hàm trên K hoặc trên K \ {x0}; với h > 0.

a) Nếu f’(x) > 0 trên khoảng (x0 – h; x0) và f’(x) < 0 trên khoảng (x0; x0 + h) thì x0 là một điểm cực đại của hàm số f(x).

b) Nếu f’(x) < 0 trên khoảng (x0 – h; x0) và f’(x) > 0 trên khoảng (x0; x0 + h) thì x0 là một điểm cực tiểu của hàm số f(x).

Lý thuyết Cực trị của hàm số chi tiết – Toán lớp 12 (ảnh 1)Lý thuyết Cực trị của hàm số chi tiết – Toán lớp 12 (ảnh 1)

Xem thêm các bài viết liên quan hay, chi tiết:

Lý thuyết Cực trị của hàm số (mới 2024 + Bài Tập) – Toán 12

Xem thêm các câu hỏi ôn tập Toán chọn lọc, hay khác:

1 2,921 03/12/2024


Xem thêm các chương trình khác: