Chứng minh tồn tại vô hạn các số nguyên tố

Vietjack.me giới thiệu bộ câu hỏi ôn tập Toán có đáp án được biên soạn bám sát chương trình học giúp bạn ôn luyện và bổ sung kiến thức môn Toán tốt hơn. Mời các bạn đón xem:

1 201 18/02/2024


15000 câu hỏi ôn tập Toán (Phần 101)

Đề bài. Chứng minh tồn tại vô hạn các số nguyên tố.

Lời giải:

Giả sử chỉ có hữu hạn các số nguyên tố là p1; p2; p3; …; pn và giả sử p1 < p2 < p3 < …< pn.

Xét tích A = p1. p2. p3. …pn + 1. Rõ ràng A > pn nên A là hợp số, do đó A có ít nhất một ước nguyên tố p.

Khi đó p1; p2; p3; …; pn là tất cả các số nguyên tố nên tồn tại I thuộc {1, 2, …, n} sao cho p = pi.

Như vậy A chia hết cho p; p1; p2; p3; …; pn chia hết cho p nên 1 chia hết cho p, mâu thuẫn.

Do đó, giả sử chỉ có hữu hạn số nguyên tố là sai.

Vậy có vô hạn các số nguyên tố.

1 201 18/02/2024


Xem thêm các chương trình khác: