Cho tứ giác ABCD. M, N là trung điểm của AC và BD. Chứng minh: AB^2 + BC^2 + CD^2 + DA^2 = AC^2 + BD^2 + 4MN^2

Vietjack.me giới thiệu bộ câu hỏi ôn tập Toán có đáp án được biên soạn bám sát chương trình học giúp bạn ôn luyện và bổ sung kiến thức môn Toán tốt hơn. Mời các bạn đón xem:

1 206 18/02/2024


15000 câu hỏi ôn tập Toán (Phần 101)

Đề bài. Cho tứ giác ABCD. M, N là trung điểm của AC và BD.

Chứng minh: AB2 + BC2 + CD2 + DA2 = AC2 + BD2 + 4MN2.

Lời giải:

15000 câu hỏi ôn tập môn Toán có đáp án (Phần 101) (ảnh 1)

Trong tam giác ABD ta có AN là đường trung tuyến:

AN2=AB2+AD22BD24

AB2 + AD2 = 2AN2 + (1)

Trong tam giác CBD có CN là đường trung tuyến:

CN2=CD2+CB22BD24

CB2 + CD2 = 2CN2 + BD22 (2)

Cộng (1) với (2) ta được: AB2 + AD2 + CB2 + CD2 = 2AN2 + 2CN2 + BD2 (3)

Xét tam giác CAN có NM là trung tuyến:

MN2=CN2+AN22AC24

AN2 + CN2 = 2MN2 + AC22(4)

Thay (4) vào (3) ta được:

AB2 + AD2 + CB2 + CD2 = 2.(2MN2 + AC22 ) + BD2 = 4MN2 + AC2 + BD2

Vậy B2 + BC2 + CD2 + DA2 = AC2 + BD2 + 4MN2.

1 206 18/02/2024


Xem thêm các chương trình khác: