Không giải phương trình, tìm các nghiệm số của phương trình

Vietjack.me giới thiệu bộ câu hỏi ôn tập Toán có đáp án được biên soạn bám sát chương trình học giúp bạn ôn luyện và bổ sung kiến thức môn Toán tốt hơn. Mời các bạn đón xem:

1 562 02/02/2024


Không giải phương trình, tìm các nghiệm số của phương trình

Đề bài: Không giải phương trình, tìm các nghiệm số của phương trình x3 – 15x2 + 71x – 105 = 0, biết rằng các nghiệm số phân biệt và tạo thành một cấp số cộng.

Lời giải:

Giả sử phương trình x3 – 15x2 + 71x – 105 = 0 có ba nghiệm tạo thành cấp số cộng:

a – d; a; a + d (với d 0).

Khi đó ta có: (a – d)3 – 15(a – d)2 + 71(a – d) – 105 = 0          (1)

                      a3 – 15a2 + 71a – 105 = 0                                    (2)

                      (a + d)3 – 15(a + d)2 + 71(a + d) – 105 = 0          (3)

Từ (1) ta có:

a3 – 3a2d + 3ad2 – d3 – 15a2 + 30ad – 15d2 + 71a – 71d – 105 = 0

Þ – 3a2d + 3ad2 – d3 + 30ad – 15d2 – 71d = 0 (do a3 – 15a2 + 71a – 105 = 0) (*)

Tương tự từ (3) ta có: 3a2d + 3ad2 + d3 – 30ad – 15d2 + 71d = 0  (**)

Cộng (*) với (**) ta được:

6ad2 – 30d2 = 0 Û 6d2(a – 5) = 0

Vì d 0 nên ta có a – 5 = 0 Û a = 5.

Vì a = 5 là một nghiệm của phương trình đã cho nên vế trái của phương trình chia hết cho (x – 5).

Do đó theo sơ đồ Horner ta có:

x3 – 15x2 + 71x – 105 = 0

Û (x – 5)(x2 – 10x + 21) = 0

Û (x – 5)(x2 – 10x + 21) = 0

Û (x – 5)(x – 3)(x – 7) = 0

Û x = 3 hoặc x = 5 hoặc x = 7.

Vậy các nghiệm của phương trình đã cho là: S=3;5;7 .

Xem thêm các câu hỏi ôn tập Toán chọn lọc, hay khác:

1 562 02/02/2024


Xem thêm các chương trình khác: