Cho (d1): y = (2m + 1)x – 2m – 3 và (d2): y = (m – 1)x + m

Vietjack.me giới thiệu bộ câu hỏi ôn tập Toán có đáp án được biên soạn bám sát chương trình học giúp bạn ôn luyện và bổ sung kiến thức môn Toán tốt hơn. Mời các bạn đón xem:

1 1,900 02/02/2024


Cho (d1): y = (2m + 1)x – 2m – 3 và (d2): y = (m – 1)x + m

Đề bài: Cho (d1): y = (2m + 1)x – 2m – 3 và (d2): y = (m – 1)x + m. Tìm m để (d1) và (d2) cắt nhau tại 1 điểm nằm trên trục hoành.

Lời giải:

• Để (d1): y = (2m + 1)x – 2m – 3 và (d2): y = (m – 1)x + m cắt nhau thì 2m + 1 ≠ m – 1

Û m ≠ ‒2.

• Để (d1) cắt trục hoành thì 2m + 1 ≠ 0 Û m12 .

Gọi A(xA; 0) là giao điểm của (d1) với trục hoành.

Khi đó 0 = (2m + 1)xA – 2m – 3

Þ xA=2m+32m+1 . Suy ra A2m+32m+1;0 .

• Để (d2) cắt trục hoành thì m – 1 ≠ 0 Û m ≠ 1.

Gọi B(xB; 0) là giao điểm của (d2) với trục hoành.

Khi đó 0 = (m – 1)xB + m

Þ xB=mm1 . Suy ra Bmm1;0 .

Để (d1) và (d2) cắt nhau tại 1 điểm trên trục hoành thì A trùng B.

2m+32m+1=mm1

Þ (2m + 3).(m – 1) = (2m + 1).(‒m)

Û 2m2 + m – 3 = –2m2 – m

Û 4m2 + 2m – 3 = 0

Û m=1±134  (thỏa mãn).

Vậy m=1±134  thỏa mãn yêu cầu đề bài

Xem thêm các câu hỏi ôn tập Toán chọn lọc, hay khác:

1 1,900 02/02/2024


Xem thêm các chương trình khác: