Chứng minh rằng: Nếu P là số nguyên tố lớn hơn 3 thì (P – 1)(P + 1) chia hết cho 24

Vietjack.me giới thiệu bộ câu hỏi ôn tập Toán có đáp án được biên soạn bám sát chương trình học giúp bạn ôn luyện và bổ sung kiến thức môn Toán tốt hơn. Mời các bạn đón xem:

1 424 02/02/2024


Chứng minh rằng: Nếu P là số nguyên tố lớn hơn 3 thì (P – 1)(P + 1) chia hết cho 24

Đề bài: Chứng minh rằng: Nếu P là số nguyên tố lớn hơn 3 thì (P – 1)(P + 1) chia hết cho 24.

Lời giải:

Vì P là số nguyên tố lớn hơn 3

Nên P không chia hết cho 2 và 3

Ta có: P không chia hết cho 2

Suy ra P – 1 và P + 1 là 2 số chẵn liên tiếp

Do đó (P – 1)(P + 1) chia hết cho 8 (1)

Mặt khác: P không chia hết cho 3

+) Nếu P = 3k +1 thì P – 1 = 3k 3

Suy ra (P – 1)(P + 1) chia hết cho 3

+) Nếu P = 3k + 2 thì P + 1 = 3k + 3 3

Suy ra (P – 1)(P + 1) chia hết cho 3

Do đó P không chia hết cho 3 thì (P – 1)(P + 1) chia hết cho 3 (2)

Từ (1) và (2) suy ra (P – 1)(P + 1) chia hết cho 8 và 3

Mà (8; 3) = 1

Suy ra (P – 1)(P + 1) chia hết cho 24

Vậy nếu P là số nguyên tố lớn hơn 3 thì (P – 1)(P + 1) chia hết cho 24.

Xem thêm các câu hỏi ôn tập Toán chọn lọc, hay khác:

1 424 02/02/2024


Xem thêm các chương trình khác: