Chứng minh rằng a^2 + ab + b^2 ≥ 0 với mọi số thực a, b

Vietjack.me giới thiệu bộ câu hỏi ôn tập Toán có đáp án được biên soạn bám sát chương trình học giúp bạn ôn luyện và bổ sung kiến thức môn Toán tốt hơn. Mời các bạn đón xem:

1 1,140 02/02/2024


Chứng minh rằng a2 + ab + b2 ≥ 0 với mọi số thực a, b

Đề bài:

a) Chứng minh rằng a2 + ab + b2 ≥ 0 với mọi số thực a, b.

b) Chứng minh với 2 số thực a, b tùy ý, ta có a4 + b4 ≥ a3b + ab3.

Lời giải:

a) Ta có: a2 + ab + b2 =a2+2ab4+b22+3b24

=a+b22+3b240 a,b.

Vậy suy ra a2 + ab + b2 ≥ 0 a,b.

b) Ta có: a4 + b4 ≥ a3b + ab3

a3(a – b) – b3(a – b) ≥ 0

(a3 – b3)(a – b) ≥ 0

(a – b)2(a2 + ab + b2) ≥ 0 a,b.

Do đó: a4 + b4 ≥ a3b + ab3 a,b.

Xem thêm các câu hỏi ôn tập Toán chọn lọc, hay khác:

1 1,140 02/02/2024


Xem thêm các chương trình khác: