Cho hình thang ABCD. Gọi M, N, P, Q lần lượt là trung điểm các cạnh AB, BC, CD, DA

Vietjack.me giới thiệu bộ câu hỏi ôn tập Toán có đáp án được biên soạn bám sát chương trình học giúp bạn ôn luyện và bổ sung kiến thức môn Toán tốt hơn. Mời các bạn đón xem:

1 1,283 02/02/2024


Cho hình thang ABCD. Gọi M, N, P, Q lần lượt là trung điểm các cạnh AB, BC, CD, DA

Đề bài: Cho hình thang ABCD. Gọi M, N, P, Q lần lượt là trung điểm các cạnh AB, BC, CD, DA.

a) Tứ giác MNPQ là hình gì? Vì sao?

b) Chứng minh ABCD là hình thang cân thì MP là phân giác của góc QMN.

Lời giải:

Tài liệu VietJack

a) Xét tam giác ABC có M, N lần lượt là trung điểm của AB và BC.

Suy ra MN là đường trung bình của tam giác ABC.

Do đó MN // AC, MN=12AC  (1)

Chứng minh tương tự, ta có: QP//AC, QP=12AC  (2)

QM // BD, QM=12BD   (3)

Từ (1) và (2) suy ra tứ giác MNPQ là hình bình hành.

b) Khi ABCD là tam giác cân với AB // CD ta có AC = BD.

Từ (3) suy ra: QM=12BD=12AC=MN      (4)

Theo câu a) MNPQ là hình bình hành mà mặt khác tứ giác MNPQ có QM = MN mà QM và MN là hai cạnh kề nên suy ra MNPQ là hình thoi.

Do đó MP là tia phân giác của QMN^ theo tính chất của hình thoi.

Xem thêm các câu hỏi ôn tập Toán chọn lọc, hay khác:

1 1,283 02/02/2024


Xem thêm các chương trình khác: