Chứng minh rằng: nếu 1 tam giác có 2 đường trung tuyến vuông góc với nhau

Vietjack.me giới thiệu bộ câu hỏi ôn tập Toán có đáp án được biên soạn bám sát chương trình học giúp bạn ôn luyện và bổ sung kiến thức môn Toán tốt hơn. Mời các bạn đón xem:

1 383 02/02/2024


Chứng minh rằng: nếu 1 tam giác có 2 đường trung tuyến vuông góc với nhau

Đề bài: Chứng minh rằng: nếu 1 tam giác có 2 đường trung tuyến vuông góc với nhau thì tổng các bình phương của 2 đường trung tuyến này bằng bình phương của đường trung tuyến thứ ba.

Lời giải:

Giả sử   có hai đường trung tuyến BE và CF vuông góc với nhau, AD là đường trung tuyến thứ ba. Ta cần chứng minh AD2=BE2+CF2

Trên tia đối của tia EF lấy điểm K sao cho EF = FK

Tứ giác AKCF có hai đường chéo cắt nhau tại trung điểm E của mỗi đường nên AKCF là hình bình hành → AK // FC. Mà FCBE nên BEAK (*)

Ta có: F là trung điểm của AB, E là trung điểm của AC nên EF là đường trung bình củaΔABC EF =  12BC và EF // BC hay EK // BD (1)

BD = 12BC (gt) nên EF = BD → EK = BD (do EF = EK theo cách chọn điểm phụ)    (2)

Từ (1) và (2) suy ra EKDB là hình bình hành → EB // DK (**)

Từ (*) và (**) suy ra →  DKAK vuông tại K AK2+KD2=AD2 (theo định lý Py-ta-go)

Mà AK = FC (do AKCF là hình bình hành) và KD = BE (do EKDB là hình bình hành) nênAD2=BE2+CF2 (đpcm)

Xem thêm các câu hỏi ôn tập Toán chọn lọc, hay khác:

1 383 02/02/2024


Xem thêm các chương trình khác: