Chứng  minh 1 . 2 + 2 . 5 + 3 . 8 + .... + n(3n – 1

Vietjack.me giới thiệu bộ câu hỏi ôn tập Toán có đáp án được biên soạn bám sát chương trình học giúp bạn ôn luyện và bổ sung kiến thức môn Toán tốt hơn. Mời các bạn đón xem:

1 310 02/02/2024


Chứng  minh 1 . 2 + 2 . 5 + 3 . 8 + .... + n(3n – 1

Đề bài: Chứng  minh 1 . 2 + 2 . 5 + 3 . 8 + .... + n(3n – 1) = n2 (n+1) với mọi n thuộc N*.

Lời giải:

1 . 2 + 2 . 5 + 3 . 8 + .... + n(3n – 1) = n2 (n + 1)                (*)

+) Với n = 1

Vế trái của (*) = 2, vế phải của (*) = 12 (1 + 1 ) = 2

Suy ra (*) đúng với n = 1

Giả sử (*) đúng với n = k (k N*) , ta có:

1 . 2 + 2 . 5 + ... + k(3k – 1) = k2(k + 1)                   (1)

Ta chứng minh (*) đúng với n = k + 1, thật vậy:

1 . 2 + 2 . 5 + ... + k(3k – 1) + (k + 1)[3(k + 1) – 1] = k2 (k + 1) + (k + 1)[3(k + 1) – 1]

1 . 2 + 2 . 5 + ... + k(3k – 1) + (k + 1)[3(k + 1) –1] = (k + 1)(k2 + 3k +2)

1 . 2 + 2 . 5 + ... + k(3k – 1) + (k + 1)[3(k + 1) –1] = (k + 1)(k2 + k + 2k + 2)

1 . 2 + 2 . 5 + ... + k(3k – 1) + (k + 1)[3(k + 1) –1] = (k + 1)[k(k + 1) + 2(k +1)]

1 . 2 + 2 . 5 + ... + k(3k – 1) + (k + 1)[3(k + 1) –1] = (k + 1)2(k + 2)

Suy ra (*) đúng với n = k + 1 , theo nguyên lý qui nạp (*) đúng với mọi n thuộc N*

Vậy 1 . 2 + 2 . 5 + 3 . 8 + .... + n(3n – 1) = n2 (n+1) với mọi n thuộc N* .

Xem thêm các câu hỏi ôn tập Toán chọn lọc, hay khác:

1 310 02/02/2024


Xem thêm các chương trình khác: