Cho khối lăng trụ tam giác đều ABC.A'B'C'. Các mặt phẳng (ABC') và (A'B'C') chia khối lăng trụ

Vietjack.me giới thiệu bộ câu hỏi ôn tập Toán có đáp án được biên soạn bám sát chương trình học giúp bạn ôn luyện và bổ sung kiến thức môn Toán tốt hơn. Mời các bạn đón xem:

1 295 02/02/2024


Cho khối lăng trụ tam giác đều ABC.A'B'C'. Các mặt phẳng (ABC') và (A'B'C') chia khối lăng trụ

Đề bài: Cho khối lăng trụ tam giác đều ABC.A'B'C'. Các mặt phẳng (ABC') và (A'B'C') chia khối lăng trụ đã cho thành 4 khối đa diện. Kí hiệu H1,  H2  lần lượt là khối có thể tích lớn nhất và nhỏ nhất trong bốn khối trên. Tính giá trị của  V(H1)V(H2).

Lời giải:

Tài liệu VietJack

Gọi E=AC'A'C  F=BC'B'C.  Khi đó (ABC') và (A'B'C') chia khối lăng trụ đều ABC.A'B'C' thành 4 khối đa diện: CEFC';   FEA'B'C';   FEABC và FEABB'A'.

Gọi V là thể tích của khối lăng trụ đều ABC.A'B'C'. Ta có:

VC.A'B'C'=VC''.ABC=13V;    VFEA'B'C'=VC.A'B'C'VCEFC';     VFEABC=VC.ABCVCEFC'VFEA'B'C'=VFEABC.

Mặt khác: VCEFC'VC.A'B'C'=CECA'CFCB'=1212=14VCEFC'=14VC.A'B'C'=1413V=112V

Suy ra 

VFEA'B'C'=VFEABC=VC.A'B'C'VCEFC'=13V112V=14VVFEABB'A'=V2.14V112V=512V.

Do đó H1  là thể tích lớn nhất của khối đa diện FEABB'A';    H2 là thể tích nhỏ nhất của khối đa diện CEFC'

Khi đó: V(H1)V(H2)=5.

Xem thêm các câu hỏi ôn tập Toán chọn lọc, hay khác:

1 295 02/02/2024


Xem thêm các chương trình khác: