Cho các số thực a, b, c thỏa mãn a^2 + b^2 + c^2 = 1. Tìm GTLN của M = ab + bc + 2ac

Vietjack.me giới thiệu bộ câu hỏi ôn tập Toán có đáp án được biên soạn bám sát chương trình học giúp bạn ôn luyện và bổ sung kiến thức môn Toán tốt hơn. Mời các bạn đón xem:

1 211 20/02/2024


15000 câu hỏi ôn tập Toán (Phần 102)

Đề bài. Cho các số thực a, b, c thỏa mãn a2 + b2 + c2 = 1.

Tìm GTLN của M = ab + bc + 2ac.

Lời giải:

Ta có: M = ab + bc + 2ac = (a + c)b + 2c

2a2+c2b+a2+c2=21b2b+1b2=fb2

Với hàm số f(t) = 21tt+1t,t0;1

Ta có: f't=12t21tt1=0

t=336=t0

Từ đó f(t) đồng biến trên ( 0 , t0) và nghịch biến trên (t0, 1)

Suy ra: maxft=f336=3+12 tức là maxP=3+12 chẳng hạn b=±t0

a=c=±121t02.

1 211 20/02/2024


Xem thêm các chương trình khác: