Có bao nhiêu cặp số nguyên (x; y) thỏa mãn 0 ≤ x ≤ 2020 và log3 (3x + 3) + x

Vietjack.me giới thiệu bộ câu hỏi ôn tập Toán có đáp án được biên soạn bám sát chương trình học giúp bạn ôn luyện và bổ sung kiến thức môn Toán tốt hơn. Mời các bạn đón xem:

1 799 02/02/2024


Có bao nhiêu cặp số nguyên (x; y) thỏa mãn 0 ≤ x ≤ 2020 và log3(3x + 3) + x

Đề bài: Có bao nhiêu cặp số nguyên (x; y) thỏa mãn 0 ≤ x ≤ 2020 và log3(3x + 3) + x = 2y + 9y?

Lời giải:

ĐKXĐ: 3x + 3 > 0 x > 1.

Ta có: log3(3x + 3) + x = 2y + 9y

log3[3(x + 1)] + x = 2y + 32y

log33 + log3(x + 1) + x = 2y + 32y

log3(x + 1) + x + 1 = 2y + 32y

log3(x + 1) + 3log3(x + 1) = 2y + 32y

Xét hàm đặc trưng f(t) = t + 3t ta có f ′(t) = 1 + 3tln3 > 0.

Hàm số y = f(t) đồng biến trên ℝ, do đó ta có log3(x + 1) = 2y

x + 1 = 32y.

Theo bài ra ta có: 0 x 2020

0 32y 1 2020

1 32y 2020

0 2y log32020 6,9

Mà y Z y {0; 1; 2; 3}.

Ứng với mỗi giá trị của y cho 1 giá trị x tương ứng.

Vậy có 4 cặp số nguyên (x;y) thỏa mãn yêu cầu bài toán.

Xem thêm các câu hỏi ôn tập Toán chọn lọc, hay khác:

1 799 02/02/2024


Xem thêm các chương trình khác: