Xếp ngẫu nhiên 5 học sinh A, B, C, D, E ngồi vào 1 dãy 5 ghế thẳng hàng

Vietjack.me giới thiệu bộ câu hỏi ôn tập Toán có đáp án được biên soạn bám sát chương trình học giúp bạn ôn luyện và bổ sung kiến thức môn Toán tốt hơn. Mời các bạn đón xem:

1 777 04/11/2024


Xếp ngẫu nhiên 5 học sinh A, B, C, D, E ngồi vào 1 dãy 5 ghế thẳng hàng

Đề bài: Xếp ngẫu nhiên 5 học sinh A, B, C, D, E ngồi vào 1 dãy 5 ghế thẳng hàng (mỗi bạn ngồi 1 ghế). Tính xác suất để 2 bạn A và B không ngồi cạnh nhau.

Lời giải:

Xếp 5 học sinh A, B, C, D, E vào 1 dãy 5 ghế thẳng hàng có 5! cách xếp n(Ω) = 5! =120.

Gọi X là biến cố: “2 bạn A và B không ngồi cạnh nhau” Biến cố đối X¯ : “ 2 bạn A và B ngồi cạnh nhau”

Buộc 2 bạn A và B coi là 1 phần tử, có 2! Cách đổi chỗ 2 bạn A và B trong buộc này.

Bài toán trở thành xếp 4 bạn (AB), C, D, E vào dãy 4 ghế thẳng hàng Có 4! cách xếp.

nX¯=2!.4!=48PX¯=nX¯nΩ=48120=25

Vậy P(X) = 1 PX¯=125=35

*Phương pháp giải:

* Sử dụng quy tắc cộng và quy tắc nhân

* Chú ý:

- Bài toán đếm yêu cầu sắp xếp phần tử A và B phải đứng cạnh nhau, ta bó (gộp) 2 phần tử làm 1, coi như chúng là 1 phần tử rồi sắp xếp.

- Bài toán đếm yêu cầu sắp xếp phần tử A và B không đứng cạnh nhau, ta đếm phần bù (Tức là đếm 2 phần tử A và B đứng cạnh nhau).

*Lý thuyết:

a) Hoán vị

- Cho tập A gồm n phần tử (n ≥ 1). Khi xếp n phần tử này theo một thứ tự, ta được một hoán vị các phần tử của tập hợp A, (gọi tắt là một hoán vị của A).

- Số hoán vị của một tập hợp có n phần tử là Pn = n! = n(n – 1)(n – 2)…3.2.1.

- Đặc điểm: Đây là sắp xếp có thứ tự và số phần tử sắp xếp đúng bằng số phần tử trong nhóm (bằng n).

- Chú ý: Giai thừa: n! = n(n – 1)(n – 2)…3.2.1

Quy ước: 0! = 1; 1! = 1.

b) Chỉnh hợp

- Cho tập hợp A có n phần tử và cho số nguyên k, (1 ≤ k ≤ n). Khi lấy k phần tử của A và sắp xếp chúng theo một thứ tự, ta được một chỉnh hợp chập k của n phần tử của A (gọi tắt là một chỉnh hợp n chập k của A).

- Số các chỉnh hợp chập k của một tập hợp có n phần tử là:Hoán vị, Chỉnh hợp, Tổ hợp và cách giải bài tập hay, chi tiết | Toán lớp 11

- Một số quy ước:Hoán vị, Chỉnh hợp, Tổ hợp và cách giải bài tập hay, chi tiết | Toán lớp 11

- Đặc điểm: Đây là sắp xếp có thứ tự và số phần tử được sắp xếp là k: 0 ≤ k ≤ n .

c) Tổ hợp

Cho tập hợp A có n phần tử và cho số nguyên k, (1 ≤ k ≤ n). Mỗi tập hợp con của A có k phần tử được gọi là một tổ hợp chập k của n phần tử của A.

- Số các tổ hợp chập k của một tập hợp có n phần tử là :Hoán vị, Chỉnh hợp, Tổ hợp và cách giải bài tập hay, chi tiết | Toán lớp 11 .

Xem thêm

Công thức hoán vị đầy đủ, chi tiết nhất - Toán lớp 11

TOP 40 câu Trắc nghiệm Hoán Vị - Chỉnh Hợp – Tổ Hợp (có đáp án 2023) – Toán 11

Xem thêm các câu hỏi ôn tập Toán chọn lọc, hay khác:

1 777 04/11/2024


Xem thêm các chương trình khác: