Tìm số bộ (x, y, z, t) nguyên không âm thỏa mãn x + y + z + t = 40 và x, y, z, t là

Vietjack.me giới thiệu bộ câu hỏi ôn tập Toán có đáp án được biên soạn bám sát chương trình học giúp bạn ôn luyện và bổ sung kiến thức môn Toán tốt hơn. Mời các bạn đón xem:

1 1,126 02/02/2024


Tìm số bộ (x, y, z, t) nguyên không âm thỏa mãn x + y + z + t = 40 và x, y, z, t là

Đề bài: Tìm số bộ (x, y, z, t) nguyên không âm thỏa mãn x + y + z + t = 40 và x, y, z, t là các số lẻ.

Lời giải:

Đặt x=2a1y=2b1z=2c1t=2d1 , với a, b, c, d là các số nguyên dương.

Suy ra 2(a + b + c + d) – 4 = x + y + z + t = 40.

Do đó a + b + c + d = 22.

Theo nguyên lí “chia kẹo Euler” thì số bộ nghiệm nguyên dương của phương trình trên là .

Vậy có 1330 số bộ (x, y, z, t) thỏa mãn yêu cầu bài toán.

Xem thêm các câu hỏi ôn tập Toán chọn lọc, hay khác:

1 1,126 02/02/2024


Xem thêm các chương trình khác: