Tìm m để y = x^3 – 3x^2 + m^2 – m + 1 có 2 điểm cực trị A, B và SABC = 7

Vietjack.me giới thiệu bộ câu hỏi ôn tập Toán có đáp án được biên soạn bám sát chương trình học giúp bạn ôn luyện và bổ sung kiến thức môn Toán tốt hơn. Mời các bạn đón xem:

1 620 02/02/2024


Tìm m để y = x3 – 3x2 + m2 – m + 1 có 2 điểm cực trị A, B và SABC = 7

Đề bài: Tìm m để y = x3 – 3x2 + m2 – m + 1 có 2 điểm cực trị A, B và SABC = 7, với C(−2; 4).

Lời giải:

y = x3 – 3x2 + m2 – m + 1

 y’ = 3x2 – 6x = 0

x=0x=2

Suy ra 2 điểm cực trị là A(0; m2 – m + 1) và B(2; m2 – m – 3).

Khi đó ta có phương trình đường thẳng AB:

x020=ym2+m1m2m3m2+m1

x2=ym2+m14

−2x = y – m2 + m – 1

2x + y – m2 + m – 1 = 0

AB=022+m2m+1m2+m+32=4+16=25

d(C;  AB)=4+4m2+m125

|−m2 + m – 1| = 7

m=3m=2

Vậy có hai giá trị của m thỏa mãn yêu cầu bài toán: m = −2; m = 3.

Xem thêm các câu hỏi ôn tập Toán chọn lọc, hay khác:

1 620 02/02/2024


Xem thêm các chương trình khác: