Cho hình chữ nhật ABCD. Qua B kẻ đường thẳng vuông góc với đường chéo AC tại H. Gọi E, F, G

Vietjack.me giới thiệu bộ câu hỏi ôn tập Toán có đáp án được biên soạn bám sát chương trình học giúp bạn ôn luyện và bổ sung kiến thức môn Toán tốt hơn. Mời các bạn đón xem:

1 676 03/02/2024


15000 câu hỏi ôn tập Toán (Phần 97)

Đề bài: Cho hình chữ nhật ABCD. Qua B kẻ đường thẳng vuông góc với đường chéo AC tại H. Gọi E, F, G theo thứ tự là trung điểm của AH, BH, CD.

a, Chứng minh tứ giác EFCG là hình bình hành.

b, Chứng minh BEG^=90° .

c, Cho biết BH = 4 cm, BAC^=30° . Tính SABCD; SEFCG.

Lời giải:

15000 câu hỏi ôn tập Toán có đáp án (Phần 97) (ảnh 1)

a) Vì E, F theo thứ tự là trung điểm của AH, BH nên EF là đường trung bình trong tam giác ABH

EF // AB và EF =12AB=12DC=DG

Vì AB // DG nên EF // DG

Xét tứ giác EFCG có: EF // DG và EF = DG

Nên EFCG là hình bình hành

b) Lại có: AB BC mà EF // AB nên EF BC

Mà BF AC

Xét trong tam giác BEC có: EF BC; BF EC nên F là trực tâm của tam giác BEC

Suy ra: CF BE (1)

Mà theo phần a có EFCG là hình bình hành nên: EG // CF (2)

Từ (1) và (2): EG BE hay BEG^=90°

c) Sử dụng tỉ số sinA trong tam giác vuông HAB ta có:

sinA^=BHABAB=4sin30°=8cm

tanA^=BCAB=33

BC=833

AC =AB2+BC2=1633

Lại có: AB2 = AH.AC AH = AB2 : AC = 43

HC = AC – AH =163343=433

Mà AE = EH =12AH=23

Suy ra: EC = HC + EH =433+23=1033

Kẻ EM vuông góc với CD tại M

BAC^=ACD^=30° (2 góc so le trong)

Ta có: sinACD^=sin30°=EMEC

EM =sin30°.1033=533

SABCD = AB.BC =8.833=6433cm2

SEFCG = EM.EF = EM . 12AB=533.12.8=2033cm2

1 676 03/02/2024


Xem thêm các chương trình khác: