Cho bốn số nguyên dương phân biệt sao cho tổng của mỗi hai số chia hết cho 2 và tổng của mỗi ba số chia hết cho 3

Vietjack.me giới thiệu bộ câu hỏi ôn tập Toán có đáp án được biên soạn bám sát chương trình học giúp bạn ôn luyện và bổ sung kiến thức môn Toán tốt hơn. Mời các bạn đón xem:

1 271 02/02/2024


15000 câu hỏi ôn tập Toán (Phần 97)

Đề bài: Cho bốn số nguyên dương phân biệt sao cho tổng của mỗi hai số chia hết cho 2 và tổng của mỗi ba số chia hết cho 3. Tìm giá trị nhỏ nhất của tổng bốn số này?

Lời giải:

Gọi 4 số ấy là a, b, c, d

Tổng 2 số bất kì chia hết cho 2 nên a, b, c, d đồng dư với nhau mod 2

Tổng 3 số bất kì chia hết cho 3 nên a, b, c, d đồng dư với nhau mod 3

a, b, c, d đồng dư với nhau mod 6

Vì a, b, c, d nguyên dương nên giá trị nhỏ nhất mà a, b, c, d có thể nhận là 1

Các số tiếp theo là 1 + 6 = 7, 7 + 6 = 13, 13 + 6 = 19

Tổng của a, b, c, d là 1 + 7 + 13 + 19 = 40.

1 271 02/02/2024


Xem thêm các chương trình khác: