Cho hàm số f(x) có bảng xét dấu của đạo hàm như sau

Vietjack.me giới thiệu bộ câu hỏi ôn tập Toán có đáp án được biên soạn bám sát chương trình học giúp bạn ôn luyện và bổ sung kiến thức môn Toán tốt hơn. Mời các bạn đón xem:

1 8,622 12/12/2024


Cho hàm số f(x) có bảng xét dấu của đạo hàm như sau

Đề bài: Cho hàm số f(x) có bảng xét dấu của đạo hàm như sau:

x

1 2 3 4 +

f’(x)

0 + 0 0 0 +

Hàm số y = 3f(x + 2) – x3 + 3x đồng biến trên khoảng nào dưới đây?

A. (1; +∞);

B. (−∞; 1);

C. (−1; 0);

D. (0; 2).

Đáp án đúng là C

Lời giải:

Ta có: y = 3f(x + 2) – x3 + 3x

y' = 3f '(x + 2) – 3x2 + 3.

Xét −1 < x < 0 ta có: 1<x+2<2f'(x+2)>0x2<1x21<0

3f '(x + 2) – 3x2 + 3 > 0 x(0;  1).

Vậy hàm số đã cho đồng biến trên (−1; 0).

*Phương pháp giải:

- Tam thức bậc hai (đối với x) là biểu thức dạng ax2+bx+c. Trong đó a, b, c là nhứng số cho trước với a0.

- Định lý về dấu của tam thức bậc hai:

Cho f(x)=ax2+bx+c (a0), Δ=b24ac.

Nếu Δ<0 thì f(x) luôn cùng dấu với hệ số a với mọi x

Nếu Δ=0 thì f(x) luôn cùng dấu với hệ số a trừ khi x=b2a.

Nếu Δ>0 thì f(x) cùng dấu với hệ số a khi x<x1 hoặc x>x2, trái dấu với hệ số a khi x1<x<x2 trong đó x1,x2(x1<x2) là hai nghiệm của f(x).

Lưu ý: Có thể thay biệt thức Δ=b24ac bằng biệt thức thu gọn Δ'=(b')2ac.

*Lý thuyết:

- Giải bất phương trình là tìm tập nghiệm của nó, khi tập nghiệm rỗng thì ta nói bất phương trình vô nghiệm.

- Điều kiện xác định của một bất phương trình: Tương tự đối với phương trình, ta gọi các điều kiện của ẩn số x để f(x) và g(x) có nghĩa là điều kiện xác định (gọi tắt là điều kiện) của bất phương trình (1).

- Bất phương trình chứa tham số: Trong một bất phương trình, ngoài các chữ đóng vai trò ẩn số còn có thể có các chữ khác được xem như những hằng số và được gọi là tham số. Giải và biện luận bất phương trình chứa tham số là xét xem với các giá trị nào của tham số bất phương trình vô nghiệm, có nghiệm và tìm nghiệm đó.

- Bất phương trình tương đương: Hai bất phương trình có cùng tập nghiệm (có thể rỗng) là hai bất phương trình tương đương và dùng kí hiệu “” để chỉ sự tương đương của hai bất phương trình đó.

- Phép biến đổi bất phương trình tương đương: Để giải một bất phương trình ta liên tiếp biến đổi nó thành những bất phương trình tương đương cho đến khi được bất phương trình đơn giản có thể viết ngay tập nghiệm. Các phép biến đổi như vậy được gọi là các phép biến đổi tương đương.

Xem thêm

Lý thuyết Bất phương trình bậc nhất một ẩn (mới + Bài Tập) – Toán 8

Xem thêm các câu hỏi ôn tập Toán chọn lọc, hay khác:

1 8,622 12/12/2024


Xem thêm các chương trình khác: