Tìm số tự nhiên nhỏ nhất có ba chữ số khi chia cho 18; 30; 45 có số dư lần lượt là: 8

Vietjack.me giới thiệu bộ câu hỏi ôn tập Toán có đáp án được biên soạn bám sát chương trình học giúp bạn ôn luyện và bổ sung kiến thức môn Toán tốt hơn. Mời các bạn đón xem:

1 559 02/02/2024


Tìm số tự nhiên nhỏ nhất có ba chữ số khi chia cho 18; 30; 45 có số dư lần lượt là: 8

Đề bài: Tìm số tự nhiên nhỏ nhất có ba chữ số khi chia cho 18; 30; 45 có số dư lần lượt là: 8; 20; 35

Lời giải:

Gọi số cần tìm là a, ta có:

a = 18.n + 8  a + 10 = (18.n + 18) 18;

a = 30.m + 20  a + 10 = (30.m + 30) 30;

a = 45.k + 35  a + 10 = (45.k + 45) 45.

(với n, m, k  ℕ)

Do đó A + 10 là bội chung của 18; 30; 45.

Mà BCNN(18, 30, 45) = 90 nên BC(18, 30, 45) = 90.x với x  ℕ*

Do đó ta có: A + 10 = 90.x.

Vì A là số có 3 chữ số nhỏ nhất nên 1 < x < 3

Với x = 2  A + 10 = 180

Vậy A = 170.

Xem thêm các câu hỏi ôn tập Toán chọn lọc, hay khác:

1 559 02/02/2024


Xem thêm các chương trình khác: