Lớp 10A có 10 học sinh giỏi Toán, 10 học sinh giỏi Lý, 11 học sinh giỏi Hóa

Vietjack.me giới thiệu bộ câu hỏi ôn tập Toán có đáp án được biên soạn bám sát chương trình học giúp bạn ôn luyện và bổ sung kiến thức môn Toán tốt hơn. Mời các bạn đón xem:

1 2,221 21/11/2024


Lớp 10A có 10 học sinh giỏi Toán, 10 học sinh giỏi Lý, 11 học sinh giỏi Hóa

Đề bài: Lớp 10A có 10 học sinh giỏi Toán, 10 học sinh giỏi Lý, 11 học sinh giỏi Hóa, 6 học sinh giỏi cả Toán và Lý, 5 học sinh giỏi cả Hóa và Lý, 4 học sinh giỏi cả Toán và Hóa, 3 học sinh giỏi cả ba môn Toán, Lý, Hóa. Số học sinh giỏi ít nhất một trong ba môn (Toán, Lý, Hóa) của lớp 10A là:

A. 19

B. 18

C. 31

D. 49

Đáp án đúng A

* Lời giải:

Theo giả thiết Đề bài cho, ta có biểu đồ Ven:

Tài liệu VietJack

Dựa vào biểu đồ Ven ta thấy:

Số học sinh chỉ giỏi Toán và Lý (không giỏi Hóa) là: 6 – 3 = 3 (em)

Số học sinh chỉ giỏi Toán và Hóa (không giỏi Lý) là: 4 – 3 = 1 (em)

Số học sinh chỉ giỏi Lý và Hóa (không giỏi Toán) là: 5 – 3 = 2 (em)

Số học sinh chỉ giỏi một môn Toán là: 10 – 3 – 3 – 1 = 3 (em)

Số học sinh chỉ giỏi một môn Lý là: 10 – 3 – 3 – 2 = 2 (em)

Số học sinh chỉ giỏi một môn Hóa là: 11 – 1 – 3 – 2 = 5 (em)

Số học sinh giỏi ít nhất một trong ba môn là:

3 + 2 + 5 + 1 + 2 + 3 + 3 = 19 (em)

* Phương pháp giải:

Sử dụng sơ đồ Ven để minh họa các tập hợp.

Dựa vào sơ đồ Ven ta thiết lập được đẳng thức hoặc phương trình từ đó tìm được kết quả bài toán.

* Lý thuyết cần nắm và dạng toán về mệnh đề và tập hợp:

Gồm 3 bước:
+ Bước 1: Chuyển bài toán về ngôn ngữ tập hợp.
+ Bước 2: Sử dụng sơ đồ Ven để minh họa các tập hợp.
+ Bước 3: Dựa vào sơ đồ Ven ta thiết lập được đẳng thức hoặc phương trình, hệ phương trình, từ đó tìm được kết quả bài toán.

Các tập con thường dùng của ℝ

- Một số tập con thường dùng của tập số thực ℝ:

+ Khoảng:

a;b=x|a<x<b

Lý thuyết Ôn tập chương 1 – Toán lớp 10 Kết nối tri thức (ảnh 1)

a;+=a|x>a

Lý thuyết Ôn tập chương 1 – Toán lớp 10 Kết nối tri thức (ảnh 1)

;b=x|x<b

Lý thuyết Ôn tập chương 1 – Toán lớp 10 Kết nối tri thức (ảnh 1)

;+

Lý thuyết Ôn tập chương 1 – Toán lớp 10 Kết nối tri thức (ảnh 1)

+ Đoạn

a;b=x|axb

Lý thuyết Ôn tập chương 1 – Toán lớp 10 Kết nối tri thức (ảnh 1)

+ Nửa khoảng

a;b=x|ax<b

Lý thuyết Ôn tập chương 1 – Toán lớp 10 Kết nối tri thức (ảnh 1)

a;b=x|a<xb

Lý thuyết Ôn tập chương 1 – Toán lớp 10 Kết nối tri thức (ảnh 1)

a;+=x|xa

Lý thuyết Ôn tập chương 1 – Toán lớp 10 Kết nối tri thức (ảnh 1)

;b=x|xb

Lý thuyết Ôn tập chương 1 – Toán lớp 10 Kết nối tri thức (ảnh 1)

- Kí hiệu + : Đọc là dương vô cực (hoặc dương vô cùng).

- Kí hiệu – : Đọc là âm vô cực (hoặc âm vô cùng).

- a, b gọi là các đầu mút của đoạn, khoảng hay nửa khoảng.

Giao của hai tập hợp

Tập hợp gồm các phần tử thuộc cả hai tập hợp S và T gọi là giao của hai tập hợp S và T, kí hiệu là S T.

S ∩ T ={x | x S và x T}.

Lý thuyết Ôn tập chương 1 – Toán lớp 10 Kết nối tri thức (ảnh 1)

Hợp của hai tập hợp

- Tập hợp gồm các phần tử thuộc tập hợp S hoặc thuộc tập hợp T gọi là hợp của hai tập hợp S và T, kí hiệu là S ∪ T.

S T = {x | x S hoặc x T}.

Lý thuyết Ôn tập chương 1 – Toán lớp 10 Kết nối tri thức (ảnh 1)

Hiệu của hai tập hợp

- Hiệu của hai tập hợp S và T là tập hợp gồm các phần tử thuộc S nhưng không thuộc T, kí hiệu là S \ T.

S \ T = {x | x S và x T}.

Lý thuyết Ôn tập chương 1 – Toán lớp 10 Kết nối tri thức (ảnh 1)

- Nếu T S thì S \ T được gọi là phần bù của T trong S, kí hiệu CST.

Lý thuyết Ôn tập chương 1 – Toán lớp 10 Kết nối tri thức (ảnh 1)

Chú ý: .

Xem thêm các bài viết liên quan hay, chi tiết

Tổng hợp lý thuyết Chương 1 - Toán 10 Kết nối tri thức

TOP 30 câu Trắc nghiệm Ôn tập cuối chương 1 (Kết nối tri thức 2024) có đáp án - Toán 10

Xem thêm các câu hỏi ôn tập Toán chọn lọc, hay khác:

1 2,221 21/11/2024


Xem thêm các chương trình khác: