Cho A = 1 + 4 + 4^2 + 4^3 +...+ 4^11. Chứng tỏ rằng

Vietjack.me giới thiệu bộ câu hỏi ôn tập Toán có đáp án được biên soạn bám sát chương trình học giúp bạn ôn luyện và bổ sung kiến thức môn Toán tốt hơn. Mời các bạn đón xem:

1 220 02/02/2024


Cho A = 1 + 4 + 4^2 + 4^3 +...+ 4^11. Chứng tỏ rằng

Đề bài: Cho A = 1 + 4 + 42 + 43 +...+ 411. Chứng tỏ rằng:

a) A chia hết cho 21;

b) A chia hết cho 105;

c) A chia hết cho 4097.

Lời giải:

a) A=1 + 4 + 42 + 43 + ... +411

= (1 + 4 + 42) + (43 + 44 + 45) + (46 + 47 + 48) + (49 + 410 + 411)

= (1 + 4 + 42) + (43.1 + 43.4 + 43.42) + (46.1 + 46.4 + 46.42) + (49.1 + 49.4 + 49.42)

= (1 + 4 + 42).1 + 43.(1 + 4 + 42) + 46.(1 + 4 + 42) + 49.(1 + 4 + 42)

= 21.1 + 43.21 + 46.21 + 49.21

= 21.(1 + 43 + 46 + 49)

Suy ra A chia hết cho 21.

b) A = 1 + 4 + 42 + 43 + ... + 411

= (1 + 4 + 42 + 43 + 44 + 45) + (46 + 47 + 48 + 49 + 410 + 411)

= (1 + 4 + 42 + 43 + 44 + 45) + (46.1 + 46.4 + 46.42 + 46.43 + 46.44 + 46.45)

= (1 + 4 + 42 + 43 + 44 + 45).1 + 46.(1 + 4 + 42 + 43 + 44 + 45)

= 1365.1 + 46.1365

= 1365.1 + 46.1365

= 1365.(1 + 46)

Suy ra 1365 chia hết cho 105 nên A chia hết cho 105.

Xem thêm các câu hỏi ôn tập Toán chọn lọc, hay khác:

1 220 02/02/2024


Xem thêm các chương trình khác: