Cho tam giác nhọn ABC, AB < AC. Các đường cao BE, CF cắt nhau tại H

Vietjack.me giới thiệu bộ câu hỏi ôn tập Toán có đáp án được biên soạn bám sát chương trình học giúp bạn ôn luyện và bổ sung kiến thức môn Toán tốt hơn. Mời các bạn đón xem:

1 454 03/02/2024


15000 câu hỏi ôn tập Toán (Phần 97)

Đề bài: Cho tam giác nhọn ABC, AB < AC. Các đường cao BE, CF cắt nhau tại H. Gọi M là trung điểm của BC. Trên tia đối của MH lấy điểm K sao cho MH = MK.

a, Chứng minh: BHCK là hình bình hành.

b, Chứng minh: BK vuông góc AB.

c, Chứng minh: tâm giác MEF cân.

d, CQ vuông góc BK tại Q. Chứng minh: EF vuông góc EQ.

Lời giải:

15000 câu hỏi ôn tập Toán có đáp án (Phần 97) (ảnh 1)

a) Xét tứ giác BHCK có:

M là trung điểm của BC (giả thiết).

M là trung điểm của HK (MH = MK).

BHCK là hình bình hành (dấu hiệu nhận biết).

b) BHCK là hình bình hành (chứng minh trên).

BK // HC mà HC AB (đường cao)

AB BK (từ vuông góc đến song song đảo).

c) M là trung điểm của BC (giả thiết)

ME là đường trung tuyến của ΔBCE
Mà ΔBCE vuông tại E
ME =12BC
M là trung điểm của BC (giả thiết).

MF là đường trung tuyến của ΔBCF
Mà ΔBCF vuông tại F
MF = 12BC = ME
ΔMEF cân (hai cạnh bên bằng nhau).

d) Xét tứ giác BFCQ có:

BFC^=90°(CF AB)

FBQ^=90°(BK AB)

BQC^=90°(CQ BK)

BFCQ là hình chữ nhật

BC = FQ

M là trung điểm FQ

ME là trung tuyến của tam giác EFQ

Suy ra: ME = 12BC =12PQ

Tam giác EFQ vuông tại E

Vậy EF vuông góc EQ.

1 454 03/02/2024


Xem thêm các chương trình khác: