Cho tam giác ABC vuông tại A có AH là đường cao

Vietjack.me giới thiệu bộ câu hỏi ôn tập Toán có đáp án được biên soạn bám sát chương trình học giúp bạn ôn luyện và bổ sung kiến thức môn Toán tốt hơn. Mời các bạn đón xem:

1 189 03/04/2024


15000 câu hỏi ôn tập Toán (Phần 105)

Đề bài. Cho tam giác ABC vuông tại A có AH là đường cao chia cạnh huyền BC thành hai đoạn BH = 4cm; HC = 6cm.

a) Gọi M là trung điểm của AC. Tính số đo góc AMB^ (làm tròn đến độ).

b) Kẻ AK vuông góc với BM (K thuộc BM). Chứng minh BK.BM = BH.BC.

Lời giải:

a) cosAMB^=AM2+MB2-AB22.AM.MB (*)

Áp dụng hệ thức lượng trong tam giác vuông:

AH2 = BH.HC = 4.6 = 24 AH=24=26cm

AB=AH2+BH2=210cm

AC=AH2+CH2 =215cm

BC=AB2+AC2 =10cm

BM là đường trung tuyến nên ta có:

BM2=AB2+BC22-AC24=52BM=213cm

AM=MC=12AC=10cm

Thay số vào (*) ta có: cosAMB^=(10)2+(213)2-(210)22.10.213=0,15

Suy ra: AMB^81,22

b) Xét ΔABM vuông tại A có AK là đường cao nên BK.BM = AB2 (1)

Xét ΔABC vuông tại A có AH là đường cao nên BH.BC = AB2 (2)

Từ (1) và (2) suy ra BK.BM = BH.BC.

1 189 03/04/2024


Xem thêm các chương trình khác: