Chứng minh tứ giác có hai đường chéo bằng nhau và cắt nhau tại trung điểm của mỗi đường

Vietjack.me giới thiệu bộ câu hỏi ôn tập Toán có đáp án được biên soạn bám sát chương trình học giúp bạn ôn luyện và bổ sung kiến thức môn Toán tốt hơn. Mời các bạn đón xem:

1 224 03/04/2024


15000 câu hỏi ôn tập Toán (Phần 105)

Đề bài. Chứng minh tứ giác có hai đường chéo bằng nhau và cắt nhau tại trung điểm của mỗi đường là hình bình hành.

Lời giải:

Gọi O là giao điểm của hai đường chéo.

Theo giả thiết ta có: OA = OC; OB = OD

Xét tam giác AOD và tam giác BOC có:

OA = OC

AOD^=BOC^ (đối đỉnh)

OB = OD

∆AOD = ∆BOC (c.g.c)

Suy ra: AD = BC và ADO^=BCO^

ADO^,BCO^ ở vị trí so le trong nên AD // BC
Suy ra: ABCD là hình bình hành vì AD = BC và AD // BC.

1 224 03/04/2024


Xem thêm các chương trình khác: